Intan Wahyuningsih
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS PENGARUH GONE THEORY, INTEGRITAS, DAN RELIGIUSITAS TERHADAP ACADEMIC FRAUD Intan Wahyuningsih
Jurnal Ilmiah Mahasiswa FEB Vol 6, No 1: Semester Ganjil 2017/2018
Publisher : Fakultas Ekonomi dan Bisnis Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk menguji faktor-faktor yang berpengaruh terhadap kecurangan akademik mahasiswa akuntansi menggunakan teori GONE (keserakahan, kesempatan, kebutuhan, dan pengungkapan), integritas, dan religiusitas. Metode pengumpulan data yang digunakan peneliti adalah metode survei. Responden penelitian ini adalah 120 mahasiswa akuntansi Universitas Negeri di Kota Malang. Metode analisis data menggunakan anailsis partial least square dengan bantuan software SmartPLS. Hasil analisis model penelitian ini menunjukkan bahwa keserakahan, kesempatan, kebutuhan, pengungkapan, dan religiusitas berpengaruh terhadap kecurangan akademik. Sebaliknya, integritas tidak berpengaruh terhadap kecurangan akademik. Implikasi dari penelitian ini relevan bagi Jurusan Akuntansi agar memperhatikan faktor keserakahan, kesempatan, kebutuhan, pengungkapan, dan religiusitas yang dapat mempengaruhi kecurangan akademik mahasiswa akuntansi. Kata kunci: kecurangan akademik, keserakahan, kesempatan, kebutuhan, pengungkapan, integritas, dan religiusitas.
Determine the Determinant of 4xn Non-Square Matrix Using Radić’s Determinant Intan Wahyuningsih; Wijayanti, Kristina
Unnes Journal of Mathematics Vol. 13 No. 2 (2024): Unnes Journal of Mathematics Volume 2, 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujm.v13i2.6698

Abstract

A non-square matrix is a matrix that has a different number of rows and columns. In the modified double-guard Hill cipher algorithm, a non-square matrix is used as the private key matrix that plays a role in the message encryption and decryption process. Therefore, the determinant of the key matrix is needed to obtain the inverse of the key matrix. Mirko Radić defined the determinant of matrix Amxn, m<=n as the signed sum of the determinants of the mxm submatrices as many as C (n, m). Radić’s determinant can be used to determine the general formula for the determinant of certain non-square matrices. The purpose of this research is to find out the determinant of matrix  R = [\matrix (1&0&0&...&0&0@0&1&0&...&0&0@0&a_1&a_2&...&a_i&0@0&0&0&...&0&1)], ai ∈ R, ∀i=1,2,...,n-2 where n>4, using Radić’s determinant and an example of its use. The result of this research are the following theorem. If a non-square matrix R = [\matrix (1&0&0&...&0&0@0&1&0&...&0&0@0&a_1&a_2&...&a_i&0@0&0&0&...&0&1)], ai ∈ R, ∀i=1,2,...,n-2 where n>4 then |R|= Σ (-1)i+1 ai , for n odd and Σ (-1)i ai, for n even  where i=2 to n-2. The use of the theorem is shown in an example problem using the modified double-guard Hill cipher where matrix R is chosen as the private key matrix. Several conditions must be met by the matrix R  to be selected as the key matrix, including all elements of matrix R being positive integers, |R|\neq 0 , and R invertible in modulo 128.