A.S. Murdiyati
Balai Penelitian Tanaman Pemanis dan Serat

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analisis Serapan Hara pada Tembakau Burley Murdiyati, A.S.
Buletin Tanaman Tembakau, Serat & Minyak Industri Vol 2, No 1 (2010): April 2010
Publisher : Balai Penelitian Tanaman Pemanis dan Serat (Balittas)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini dilakukan untuk mengetahui pola serapan hara dan tingkat efisiensi dosis pemupukan N pada tembakau burley. Penelitian ini terdiri atas dua unit percobaan, yaitu: (1) Percobaan di rumah kaca, meng-gunakan varietas Ky 17 ditanam pada 100 pot dengan dosis pemupukan standar. Pengamatan secara perio-dik meliputi kadar N, P, K, Mg, dan berat kering daun, batang, akar, dan total; (2) Percobaan lapangan dila-kukan di Lumajang pada tipe tanah Entisol, dengan rancangan acak kelompok dengan tiga ulangan. Perla-kuan adalah dosis pemupukan N, yaitu 0, 75, 150, 225, dan 300 kg N/ha. Pengamatan meliputi: akumulasi bahan kering, serapan N, P, K, dan Mg total; hasil kerosok, indeks mutu, dan indeks tanaman. Hasil peneliti-an menunjukkan bahwa tembakau burley mulai memasuki pertumbuhan cepat pada 5 minggu setelah ta-nam, sejalan dengan peningkatan akumulasi bahan kering, N, P, K, dan Mg. Semakin tinggi dosis N, efisiensi pemupukan semakin menurun. Efisiensi serapan N tertinggi (51,56%) diperoleh pada dosis 150 kg N/ha, yang memberikan hasil kerosok 1,77 ton/ha; indeks mutu 59,55; dan indeks tanaman 105,51. Serapan P to-tal 14,26 kg/ha; 36,56% dari pupuk yang diberikan. Serapan K total 140,98 kg K/ha, 53,00% berasal dari K tanah, dan serapan Mg total 54,43 kg Mg/ha. Two experiments were conducted to study nutrient absorption pattern and efficiency of nitrogen utilization of burley tobacco. The first was conducted in screen house. Burley tobacco variety Ky 17 was planted in 100 pots with based recommended fertilization. The data of N, P, K, and Mg concentration and dry matter accu-mulation of leaf, stalk, root, and total were periodically collected. The second experiment was conducted in Pasirian, Lumajang, on Entisol soil, using randomized block design with three replications. The rate of 0, 75, 150, 225, and 300 kg N/ha were applied. The observation parameters were total dry matter, N, P, K, and Mg accumulation; yield, grade index, and crops index. Results showed rapid growth rate of burley tobacco began on 5 weeks after transplanting, related to rapid nutrient accumulation rate. Higher N rate resulted in lower efficiency of N fertilization. The highest N fertilizer absorption efficiency (51.56%) was achieved at 150 kg N/ha that produced 1.77 ton/ha dried leaves, grade index 59.55, and crops index 105.51. Absorption of total P was 14.26 kg/ha or equivalent to 36.56% of P fertilization. Total K absorbed was 140.98 kg K/ha, 53% from the soil, and total Mg absorbed was 54.43 kg Mg/ha.
Kandungan Kimia Tembakau dan Rokok Tirtosastro, Samsuri; Murdiyati, A.S.
Buletin Tanaman Tembakau, Serat & Minyak Industri Vol 2, No 1 (2010): April 2010
Publisher : Balai Penelitian Tanaman Pemanis dan Serat (Balittas)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kandungan kimia tembakau yang sudah teridentifikasi jumlahnya mencapai 2.500 komponen. Dari jumlah tersebut sekitar 1.100 komponen diturunkan menjadi komponen asap secara langsung dan 1.400 lainnya mengalami dekomposisi atau terpecah, bereaksi dengan komponen lain dan membentuk komponen baru. Di dalam asap sendiri terdapat 4.800 macam komponen kimia yang telah teridentifikasi. Telah diidentifikasi komponen kimia rokok yang berbahaya bagi kesehatan, yaitu: tar, nikotin, gas CO, dan NO yang berasal dari tembakau. Selain itu juga bahan-bahan berbahaya yang terbentuk saat penanaman, pengolahan, dan penyajian dalam perdagangan, yaitu residu pupuk dan pestisida, TSNA (tobacco spesific nitrosamine), B-a-P (benzo-a-pyrene), dan NTRM (non-tobacco related material). Pengendalian tar, nikotin, gas CO dan NO da-pat dilakukan dalam proses pembuatan rokok dengan penggunaan filter, kertas rokok yang berpori-pori, dan lain-lain. Sedangkan residu pupuk dan pestisida, TSNA, B-a-P, dan NTRM dapat dikendalikan melalui sistem produksi tembakau yang benar yang mengacu pada usaha menekan bahan berbahaya. The amount of 2,500 of tobacco chemical compounds had been identified. From this amount, 1,100 com-pounds were directly derived to be smoke component, while the 1,400 compound would break into other compounds, react to other compound and built up new compounds. From the smoke, 4,800 compounds had been identified. The hazardous component of cigarette for human health had been identified, i.e. tar, nico-tine, and CO and NO gases those come from tobacco. Besides, other hazardous component were built up along of tobacco planting, processing, and marketing, i.e. fertilizer and pesticide residues, TSNA (tobacco specific nitrosamine), B-a-P (benzo-a-pyrene), and NTRM (non-tobacco related material). To control tar, ni-cotine, and CO and NO gases could be done by using filter, porous cigarette’s paper etc. While fertilizer and pesticide residues, TSNA, B-a-P, and NTRM could be controlled by good agricultural practices that concern to pressure the hazardous component.
Pengolahan Daun Tembakau dan Dampaknya Terhadap Lingkungan Tirtosastro, Samsuri; Murdiyati, A.S.
Buletin Tanaman Tembakau, Serat & Minyak Industri Vol 3, No 2 (2011): Oktober 2011
Publisher : Balai Penelitian Tanaman Pemanis dan Serat (Balittas)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tembakau merupakan bahan baku utama industri hasil tembakau seperti rokok keretek, cerutu, tembakau iris, dan lain-lain. Sebelum digunakan, daun tembakau harus melalui proses pengolahan. Pengolahan tembakau pada dasarnya merupakan kegiatan pengeringan, dengan penerapan suhu bertahap atau disebut proses kiu-ring (curing). Dalam proses pengolahan tembakau diperlukan energi, yang selama ini berasal dari panas ma-tahari, udara panas buatan hasil pembakaran kayu, minyak tanah, batu bara, LPG (liquefied petroleum gas), atau limbah pertanian. Penggunaan bahan bakar ini menyebabkan polusi udara, sehingga mencemari ling-kungan dan meracuni pekerja. Tembakau sendiri mengandung bahan berbahaya seperti, debu tembakau, ni-kotin, residu pestisida, TSNA (tobacco spesific nitrosamine), B-a-P (benzo-a-pyrene), dan lain-lain. Petunjuk pengendalian bahan berbahaya dan dampak lingkungan tersebut, selama ini sudah tersedia secara lengkap yang ditetapkan oleh organisasi tembakau dunia Coresta dan diimplementasikan oleh perusahaan-perusaha-an mitra petani. Petani yang sistem produksinya dalam bentuk kemitraan dengan perusahaan-perusahaan tembakau, telah melakukan pengendalian dengan baik. Dampak negatif penggunaan bahan bakar dapat di-tekan dengan sistem pemanasan tidak langsung (flue-curing), sedangkan penggunaan batu bara dilakukan dengan tungku pembakaran gasifikasi. Implementasi selanjutnya, selain diperlukan sistem inspeksi sesuai ketentuan juga perlu didorong terbentuknya kemitraan antara perusahaan tembakau dan petani. Tobacco leaf is the main raw material of tobacco industries such as cigarette, cigar, slices tobacco, etc. Be-fore being used, tobacco leaves have to go through processing. Tobacco processing is basically a drying acti-vity, with the application of temperature or a gradual process called curing. In the processing of tobacco ener-gy needed, which is derived from the hot sun, hot air made by the burning wood, kerosene, coal, LPG (li-quefied petroleum gas), or agricultural waste. The use of these fuels causes air pollution, thus contaminating the environment and poisoning workers. Tobacco itself contain hazardous materials such as tobacco dust, ni-cotine, pesticide residue, TSNA (tobacco specific nitrosamines), B-a-P (benzo-a-pyrene) and others. In-structions on control of hazardous materials and environmental impact, as long as it is available completely de-termined by the organization of the world tobacco Coresta and implemented by partner company of farmers. Farmer production systems in the form of partnership with tobacco companies, has done well control. The ne-gative impact of fuel use could be reduced by an indirect heating system (flue-curing), while the use of coal gasification is done by burning stove. Subsequent implementation, in addition to the required inspection sys-tem according to the provisions, should also be encouraged such as partnerships between tobacco companies and farmers.