Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Computer and Technology

SISTEM INFORMASI E-COMMERCE PENJUALAN KERAJINAN ROTAN BERBASIS WEBSITE PADA DESA LOANG MAKA KECAMATAN JANAPRIA Febri, Elin Febriani; Imran, Bahtiar; Muslim, Rudi
Journal Computer and Technology Vol. 1 No. 1 (2023): Juli 2023
Publisher : Ninety Media Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69916/comtechno.v1i1.83

Abstract

Desa Loang Maka adalah salah satu desa yang berada di Kecamatan Janapria Kabupaten Lombok Tengah dimana desa tersebut teradapat banyak pengerajin rotan yang masih beroprasi. Saat ini, para pengerajin kesulitan dalam mempromosikan hasil kerajinan mereka sehingga perlu adanya inovasi untuk membantu dalam mempermudah pemasaran produk dan penemuan barang bagi konsumen. Segmentasi pasar yang mampu dicakup jika menggunakan sistem home industry terlalu sempit, karena masyarakat kurang mengetahui ketersediaan barang yang dibutuhkan. Selain itu, Belum adanya sistem informasi penjualan kerajinan tangan di home industry ini membuat pengrajin hanya bisa memasarkan di sekitar Desa Loang Maka. Berdasarkan dari permasalahan tersebut maka para pengerajin memerlukan suatu sistem yang memberikan layanan berbasis website dalam mempromosikan hasil kerajinan rotan.
CYBER BULLYING SENTIMENT ANALYSIS BASED ON SOCIAL CATEGORIES USING THE CHI-SQUARE TEST Hadi, Zulpan; Suryadi, Emi; Akbar, Ardiyallah; Zaenudin; Muslim, Rudi
Journal Computer and Technology Vol. 2 No. 1 (2024): Juli 2024
Publisher : Ninety Media Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69916/comtechno.v2i1.144

Abstract

This research evaluates various machine learning models in classifying sentiment in cyberbullying data across six categories: not_cyberbullying, gender, religion, other_cyberbullying, age, and ethnicity. Using a Bag of Words approach combined with Chi-Square feature selection (1000 features), models tested include SVM, Logistic Regression, Naïve Bayes, KNN, and Random Forest. Results show SVM and Logistic Regression achieving the highest accuracy at 83%, indicating their effectiveness in prediction. Naïve Bayes performed the poorest with 62% accuracy, suggesting a mismatch with the data or need for further tuning. KNN and Random Forest showed good performance with 75% and 81% accuracy respectively, though not as high as SVM and Logistic Regression. This multi-algorithm approach provides insights into each model's effectiveness and behavior on diverse data characteristics, essential for understanding the unique nuances of each cyberbullying category. Model selection should consider accuracy, interpretability, computational cost, and suitability to specific problem characteristics. This research aims to deepen understanding of cyberbullying to support more effective mitigation strategies.