Claim Missing Document
Check
Articles

PENERAPAN ALGORITMA AES (ADVANCED ENCRYPTION STANDARD) DALAM PENYANDIAN KOMPRESI DATA Wahyudi, Erfan; Imran, Bahtiar; Subektiningsih, -; Muzakka, Akhmad
Jurnal Explore Vol 8, No 2 (2018)
Publisher : STMIK Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dengan perkembangan teknologi komputer saat ini, pertukaran informasi dari suatu pihak ke pihak lain sangatlah diperlukan. Informasi yang dikirimkan tersebut biasanya tidak ingin diketahui oleh pihak yang tidak berkepentingan terutama pihak-pihak yang tidak bertanggungjawab. Ancaman keamanan terhadap informasi tersebut dapat berupa interupsi, intersepsi, modifikasi, dan fabrikasi. Ancaman-ancaman ini dapat memanipulasi hingga menghapus data yang ditransmisikan melalui komputer. Untuk mengatasi ancaman tersebut, diperlukanlah suatu cara agar informasi tersebut tidak dapat diketahui oleh pihak lain. Salah satu caranya dalah dengan menggunakan kriptografi. Dalam paper ini algoritma kriptografi yang digunakan adalah AES (Advanced Encryption Standard) yang dibuat oleh Rijmen dan Daemen dari Belgia. Hasilnya, Algoritma AES atau Rijndael merupakan algoritma simetri yang sangat cocok digunakan untuk berbagai keperluan yang berkaitan dengan kriptografi saat ini termasuk penyandian, salah satunya adalah untuk penyandian sandi-lewat untuk file kompresi
Penerapan SIPI (Sistem Informasi Pendaftaran IGD) pada UPTD Puskesmas Senaru Baihaki, Makmun; Imran, Bahtiar; Wahyudi, Erfan
Jurnal Explore Vol 8, No 2 (2018)
Publisher : STMIK Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Untuk pendaftaran IGD dan pelaporan pada puskesmas senaru masih bersifat manual sehingga kemungkinan terjadinya kesalahan sangat besar, untuk itu puskesmas senaru membutuhkan sebuah sistem yang dapat meminimalisir terjadinya kesalahan tersebut. Pada penelitian ini, diusulkan penerapan SIPI (Sistem Informasi Pendaftaran IGD) dalam mengatasi permasalahan yang ada pada puskesmas senaru. Aplikasi SIPI di buat menggunakan bahasa pemrograman PHP dan MySQL sedangkan untuk metode pengembangan aplikasi menggunakan metode waterfall. Dengan adanya aplikasi SIPI (Sistem Informasi Pendaftaran IGD) ini dapat membantu puskesmas senaru dalam melakukan pengolahan data pasien, transaksi pendaftaran IGD, dan pelaporan.
Implementasi Website Portal Sekolah Sebagai Media Promosi dan Penyampaian Informasi (Studi Kasus : SMAN 1 Praya Timur) Riska, Baiq Nonik Ria; Imran, Bahtiar; Wahyudi, Erfan
Jurnal Explore Vol 7, No 2 (2017)
Publisher : STMIK Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Peranan teknologi informasi pada aktivitas manusia pada saat ini begitu besar. Teknologi informasi telah menjadi fasilitator utama bagi perusahaan dan organisasi. Hal inilah yang memberikan kemudahan bagi manusia untuk melakukan pekerjaan serta mendapatkan informasi dengan lebih cepat. Salah satu teknologi informasi yang berkembang saat ini adalah website atau lebih dikenal dengan sebutan web, yang merupakan suatu koleksi dokumen elektronik pribadi atau perusahaan dalam server web  yang digunakan untuk mengakses berbagai informasi. Website portal ini dibangun menggunakan bahasa permrograman PHP. Dengan adanya website portal ini dapat membantu pihak sekolah dalam melakukan promosi dan penyampaian informasi kepada masyarakat.
ANALISIS BUKTI DIGITAL WHATSAPP PADA ANDROID SMARTPHONE MENGGUNAKAN METODE LIVE FORENSIC Wahyudi, Erfan; Gunawan, Karya; Imran, Bahtiar; Zulpahmi, M
Jurnal Explore Vol 10, No 2 (2020)
Publisher : STMIK Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35200/explore.v10i2.428

Abstract

Abstract : The rapid development of technology, can cause problems for users of the technology itself, the more advanced the life of the community, the crime is also getting more advanced. Smartphone is a form of technology used for defamation (Cyberbuliying) through whatsapp (WA) facilities. When a smartphone is used to commit a crime, the smartphone can be confiscated by law enforcement as evidence. The way to prove it to get valid evidence is to conduct an investigation using the live forensic method that has been developed so that it can be used for the smartphone investigation process. The result is digital evidence of deleted image files that can still be recovered using the live forensic method.Keywords: Evidence, live forensic, SmartphoneAbstrak - Perkembangan teknologi yang semakin pesat, dapat menimbulkan permasalahan bagi pengguna teknologi itu sendiri, semakin maju kehidupan masyarakat, maka kejahatan juga ikut semakin maju. Smartphone merupakan salah satu bentuk teknologi yang digunakan untuk melakukan pencemaran nama baik (Cyberbuiying) melalui fasilitas whatsapp (WA). Pada saat smartphone yang digunakan untuk melakukan kejahatan maka smartphone tersebut dapat disita oleh aparat penegak hukum sebagai salah satu barang bukti. Cara pembuktian untuk mendapatkan bukti yang valid adalah dengan melakukan investigasi menggunakan metode live forensic yang telah dikembangkan sehingga dapat digunakan untuk proses investigasi smartphone. Hasilnya adalah bukti digital berupa file gambar yang sudah terhapus masih bisa di recovery menggunakan metode live forensic.Kata Kunci: Barang Bukti, live forensic, Smartphone.
Family Relationship Identification by Using Extract Feature of Gray Level Co-occurrence Matrix (GLCM) Based on Parents and Children Fingerprint Suharjito Suharjito; Bahtiar Imran; Abba Suganda Girsang
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 5: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (12.646 KB) | DOI: 10.11591/ijece.v7i5.pp2738-2745

Abstract

This study aims to find out the relations correspondence by using Gray Level Co-occurrence Matrix (GLCM) feature on parents and children finger print. The analysis is conducted by using the finger print of parents and family in one family There are 30 families used as sample with 3 finger print consists of mothers, fathers, and children finger print. Fingerprints data were taken by fingerprint digital persona u are u 4500 SDK. Data analysis is conducted by finding the correlation value between parents and children fingerprint by using correlation coefficient that gained from extract feature GLCM, both for similar family and different family. The study shows that the use of GLCM Extract Feature, normality data, and Correlation Coefficient could identify the correspondence relations between parents and children fingerprint on similar and different family. GLCM with four features (correlation, homogeneity, energy and contrast) are used to give good result. The four sides (0o, 45o, 90o and 135o) are used. It shows that side 0o gives the higher accurate identification compared to other sides.
Fingerprint Pattern of Matching Family with GLCM Feature Bahtiar Imran; Karya Gunawan; Muhammad Zohri; Lalu Darmawan Bakti
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 4: August 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i4.8534

Abstract

In this research, fingerprint pattern matching is done to find out whether there is the similarity between parent and child fingerprint pattern. An important step in fingerprint matching is the fingerprint pattern search and matching. Fingerprint data is used by 11 families from various families. The method used in fingerprint feature extraction is GLCM. The GLCM angle used is 0o, and the features used are contrast, homogeneity, correlation, and energy. For fingerprint pattern matching use minutiae score. From the results obtained GLCM has been widely used in fingerprint texture analysis. This study proves that the proposed method for matching fingerprints on parents and children gets the most dominant pattern is the loop pattern.
Identification of virtual plants using bayesian networks based on parametric L-system Suhartono Suhartono; Fachrul Kurniawan; Bahtiar Imran
International Journal of Advances in Intelligent Informatics Vol 4, No 1 (2018): March 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v4i1.157

Abstract

Parametric L-System is a method for modelling virtual plants. Virtual plant modelling consists of components of axiom and production rules for alphabets in parametric L-System. Generally, to get the alphabet in parametric L-System, one would guess the production rules and perform a modification on the axiom. The objective of this study was to build virtual plant that was affected by the environment. The use of Bayesian networks was to extract the information structure of the growth of a plant as affected by the environment. The next step was to use the information to generate axiom and production rules for the alphabets in the parametric L-System. The results of program testing showed that among the five treatments, the combination of organic and inorganic fertilizer was the environmental factor for the experiment. The highest result of 6.41 during evaluation of the virtual plant came from the treatment with combination of high level of organic fertilizer and medium level of inorganic fertilizer. Mean error between real plant and virtual plan was 9.45 %.
Pengembangan Sistem Informasi Geografis Berbasis Android Pada Wisata Daerah Lombok, Nusa Tenggara Barat Ahmad Subki; Bahtiar Imran; Surni Erniwati
Infotek: Jurnal Informatika dan Teknologi Vol 4, No 2 (2021): Infotek : Jurnal Informatika dan Teknologi
Publisher : Fakultas Teknik Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (855.208 KB) | DOI: 10.29408/jit.v4i2.3667

Abstract

Lombok Island is one of the tourist destinations in Indonesia that has the potential to be developed. Based on data from the NTB Provincial Tourism Office at the end of 2019, the number of tourist visits was 3,706,352 tourists, with details of 1,550,751 foreign tourists and 2,155,561 domestic tourists. Based on the 2018-2023 Strategic Plan, the Culture and Tourism Office of West Nusa Tenggara Province, the island of Lombok has potential tourism objects such as beach tourism, waterfalls, mountains, culinary, culture, religion, and others. However, not all existing tourist attractions are known by visiting tourists, both the location of tourist attractions or the distance traveled to tourist sites, so it is necessary to make efforts to increase the number of visitors who come to the island of Lombok through various efforts. One of the efforts that can be done is the application of an Android-based tourism system so that it can be accessed by foreign tourists or domestic tourists who can provide complete information about tourist information on the island of Lombok. The system development method used in this research is the Research and Development (RD) method. Geographic Information Systems with the Research and Development (RD) method can provide good results and can be proven from the limited test results getting an average result of 71.45% with "GOOD" criteria, and field testing with an average result of 72.32 % with “GOOD” Criteria
THE IMPLEMENTATION OF EXTRACTION FEATURE USING GLCM AND BACK-PROPAGATION ARTIFICIAL NEURAL NETWORK TO CLASIFY LOMBOK SONGKET WOVEN CLOTH Bahtiar Imran; Muhamad Masjun Efendi
Jurnal Techno Nusa Mandiri Vol 17 No 2 (2020): Techno Nusa Mandiri : Journal of Computing and Information Technology Period of
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/techno.v17i2.1680

Abstract

The aimed of this study was to apply the feature extraction method of GLCM and Back-propagation Artificial Neural Network (ANN) to classify Lombok's typical Songket woven cloth by classifying based on the texture of the Songket woven cloth. Songket woven cloth in Lombok in terms of weaving and texture are vary from region to region. For example the songket woven cloth in Pringgasela Village, Sukarara Village and Sade Village has differences in texture and motifs. For this reason, this study focuses on classifying Lombok's typical Songket woven cloth by performing feature extraction on woven cloth using the GLCM method and the classification method uses Back-propagation Artificial Neural Network (ANN). For data collection, the data was taken directly from the Songket weaving centers in Pringgasela, Sade and Sukarara. In the classification stage the training data used were 64 data and 11 test data. Then the epoch used was 41 iterations with a time of 0:00:04, with neurons 80 and 100. The use of neurons 80 generated 18% which was successful in the classification. While using 100 neurons generated 100% successful which was can be classified. Based on the classification results obtained, the use of 100 neurons gained good classification results.
Implementation of Machine Learning Model for Pneumonia Classification Based on X-Ray Images Bahtiar Imran; Hambali Hambali; Lalu Darmawan Bakti
Jurnal Mantik Vol. 5 No. 3 (2021): November: Manajemen, Teknologi Informatika dan Komunikasi (Mantik)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study applies a Machine Learning learning model for Pneumonia classification based on x-ray images. This study uses two classes, namely Pneumonia Class and Normal Class, and uses Epoch 10, Epoch 50, Epoch 250 and Epoch 700, Learning Rate 0.001, and Batch Size 16. Learning carried out using Epoch 10 to get accuracy results per class is Pneumonia Class 0.97 and Class 0.95. While learning using Epoch 50 gets accuracy results per class, namely Pneumonia Class 0.97 and Normal class 0.97, and for learning, using Epoch 250 gets accuracy results for Pneumonia Class 1.00 and Normal Class 0.97. By using Epoch 700, the accuracy results were obtained for Pneumonia Class 1.00 and Normal Class 1.00. From the results of tests carried out using Learning Rate 0.001, Batch Size 16 and Epoch 10 received an accuracy of 64%. For Learning Rate 0.001, Batch Size 16 and Epoch 50 obtained 86% accuracy, and for Learning Rate 0.001, Batch Size 16 and Epoch 250 got 87% accuracy, while for Learning Rate 0.001, Batch Size 16 and Epoch 700 get 92% accuracy. From this study, the results show the highest precision using Epoch 700.
Co-Authors AA Sudharmawan, AA Abba Suganda Girsang, Abba Suganda ahmad yani Ahmad Yani Akbar, Ardiyallah Akhmad Muzakka Alfian Hidayat Amirudin Kalbuadi Anak Agung Istri Sri Wiadnyani Andre Satriawan Atika Zahra Nirmala Baihaki, Makmun Baiq Nonik Ria Riska Baiq Nonik Ria Riska Diki Hananta Firdaus Efendi, Muhamad Masjun Erfan Wahyudi Erniwati, Surni Fachrul Kurniawan Febri, Elin Febriani Giardi, Muh Hamzah Andung Hambali Hambali Hambali Hambali Hambali, H Hamim, Lutfi Hanis Purnamasidi Hasan Basri Hendri Ramdan Hidayatullah, Beni Ari Karim, Muh Nasirudin Karina Nurwijayanti Karya Gunawan Karya Gunawan Lalu Darmawan Bakti Lalu Darmawan Bakti, Lalu Darmawan Lalu Delsi Samsumar, M.Eng. M Zulpahmi M. Zulpahmi M. Zulpahmi Mahayadi, Mahayadi Makmun Baihaki Marroh, Zahrotul Isti’anah Maspaeni Maspaeni Moch Arief Soeleman Moh. Arief Soeleman Muahidin, Zumratul Muh. Akshar Muhammad Rijal Alfian Muhammad Zohri Mutaqin, Zaenul Muttaqin, Athaur Muzakka, Akhmad Ndang, Rijalul Mujahidin Nining Putri Ningsih Nunung Rahmania Nurkholis, Lalu Moh. Pratama, Rifqy Hamdani Purwanto Purwanto Ricardus Anggi Pramunendar Riska, Baiq Nonik Ria Rosida, Sri Rudi Muslim Rudi Muslim Salman Salman Salman Salman Saputra, Dede Haris Selamet Riadi Selamet Riadi Sriasih, Sriasih Subektiningsih Subektiningsih Subki, Ahmad Suharjito Suharjito, Suharjito Suhartono Surni Erniwati Surni Erniwati Suryadi, Emi Tahrir, Muhammad Zaeniah Zaeniah Zaeniah Zaeniah Zaenudin Zaenudin Zaenudin Zaenudin Zaenudin Zaenudin Zaenudin Zahroni, Teguh Rizali Zenuddin, Z Zulpahmi, M Zulpahmi, M. Zulpan Hadi