Lathifah Puji Hastuti
Department Of Chemistry, Faculty Of Mathematics And Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Effect of Polymer Concentration on the Photocatalytic Membrane Performance of PAN/TiO2/CNT Nanofiber for Methylene Blue Removal through Cross-Flow Membrane Reactor Lathifah Puji Hastuti; Ahmad Kusumaatmaja; Adi Darmawan; Indriana Kartini
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.2.13668.350-362

Abstract

A photocatalytic membrane combining photocatalyst and membrane technology based on polyacrylonitrile (PAN) and TiO2/CNT has been developed. Such combination is to overcome fouling formation on the membrane, thus prolonging the membrane lifetime and enhancing the efficiency on the waste treatment. PAN nanofiber was prepared by electrospinning method. The precursor solution was dissolved PAN and dispersed TiO2/CNT in N,N-Dimethylformamide (DMF). PAN concentration in the precursor solution was varied at 4.5, 5.5, 6.5, 7.5, and 8.5%. The effect of PAN concentration on the fiber morphology and pore size was discussed. The performance of the resulted membrane on methylene blue (MB) removal was also investigated on a cross-flow system. SEM images of the resulted membrane identified that PAN nanofiber was successfully fabricated with random orientation. The PAN 6.5% showed the highest diffraction intensity of the anatase crystalline phase of TiO2. The additions of CNT and TiO2 lead to the formation of a cluster of beads as confirmed by TEM. Increasing the concentration of PAN increased the fiber diameter from 206 to 506 nm, slightly decreased the surface area and pore size, respectively, from 32.739 to 21.077 m2.g−1 and from 6.38 to 4.75 nm. The PAN/TiO2/CNT nanofibers show type IV of the adsorption-desorption N2 isotherms with the H1 hysteresis loops. Membrane PAN/TiO2/CNT at PAN concentration of 6.5% shows the optimum performance on the MB color removal by maintaining the percentage of rejection (%R) at 90% for 240 min and permeability of 750 LMH. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Hydrocracking of α-Cellulose Using Co, Ni, and Pd Supported on Mordenite Catalysts Wega Trisunaryanti; Triyono Triyono; Ria Armunanto; Lathifah Puji Hastuti; Desinta Dwi Ristiana; Resi Vita Ginting
Indonesian Journal of Chemistry Vol 18, No 1 (2018)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (463.335 KB) | DOI: 10.22146/ijc.26491

Abstract

Hydrocracking of α-cellulose has been conducted in a semi-batch reactor at 400, 450, and 500 °C with hydrogen flow (30 mL/min.) for 4 h. Mordenite (MOR) and Co, Ni and Pd metal supported on the MOR were used as solid catalysts. The catalysts were characterized using X-ray Diffractometer (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM) to evaluate the physical-chemical properties. Energy Dispersive X-ray (EDX) and Inductively Coupled Plasma (ICP) were used to analyze the amount of metal impregnated on the catalysts. The liquid product was analyzed using Gas Chromatograph-Mass Spectroscopy (GC-MS). Thermal hydrocracking was also conducted at 450 °C with the amount of liquid product was 37.86 wt.%. The highest liquid conversion obtained by mordenite catalyst was 94.66 wt.% at 450 °C and the highest liquid conversion (98.08 wt.%) was reached by Pd/MOR catalyst at 400 °C.
Effect of Polymer Concentration on the Photocatalytic Membrane Performance of PAN/TiO2/CNT Nanofiber for Methylene Blue Removal through Cross-Flow Membrane Reactor Lathifah Puji Hastuti; Ahmad Kusumaatmaja; Adi Darmawan; Indriana Kartini
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.2.13668.350-362

Abstract

A photocatalytic membrane combining photocatalyst and membrane technology based on polyacrylonitrile (PAN) and TiO2/CNT has been developed. Such combination is to overcome fouling formation on the membrane, thus prolonging the membrane lifetime and enhancing the efficiency on the waste treatment. PAN nanofiber was prepared by electrospinning method. The precursor solution was dissolved PAN and dispersed TiO2/CNT in N,N-Dimethylformamide (DMF). PAN concentration in the precursor solution was varied at 4.5, 5.5, 6.5, 7.5, and 8.5%. The effect of PAN concentration on the fiber morphology and pore size was discussed. The performance of the resulted membrane on methylene blue (MB) removal was also investigated on a cross-flow system. SEM images of the resulted membrane identified that PAN nanofiber was successfully fabricated with random orientation. The PAN 6.5% showed the highest diffraction intensity of the anatase crystalline phase of TiO2. The additions of CNT and TiO2 lead to the formation of a cluster of beads as confirmed by TEM. Increasing the concentration of PAN increased the fiber diameter from 206 to 506 nm, slightly decreased the surface area and pore size, respectively, from 32.739 to 21.077 m2.g−1 and from 6.38 to 4.75 nm. The PAN/TiO2/CNT nanofibers show type IV of the adsorption-desorption N2 isotherms with the H1 hysteresis loops. Membrane PAN/TiO2/CNT at PAN concentration of 6.5% shows the optimum performance on the MB color removal by maintaining the percentage of rejection (%R) at 90% for 240 min and permeability of 750 LMH. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
The Potency of Photocatalytic Membrane Bioreactor for Wastewater Treatment: A Brief Review Hastuti, Lathifah Puji
Indonesian Journal of Chemical Studies Vol. 4 No. 1 (2025): Indones. J. Chem. Stud., June 2025
Publisher : Indonesian Scholar Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55749/ijcs.v4i1.63

Abstract

Membrane bioreactors (MBR) are a promising method for wastewater treatment that combines microbial degradation with membrane separation. MBRs offer efficient and sustainable wastewater treatment by combining biological processes with membrane filtration, providing high-quality effluents for reuse. The advantages of MBRs, such as their compact design, reduced sludge production, and water recycling potential, make them increasingly significant in addressing global water scarcity and pollution challenges. Nevertheless, the issue of biofouling persists as a notable obstacle, primarily caused by the interplay of bacteria, membrane surfaces, and the release of extracellular polymeric substances (EPS). Integrating photocatalysts into MBR membranes offers a new method to reduce fouling. This study provides a comprehensive overview of current research on the membrane modification using photocatalysts in MBR systems, focusing on the existing challenges and prospects in this field. Despite these potential advantages, research on improving MBR membrane performance through photocatalysis is sparse. To ensure the sustainability of this technology, it is essential to consider important factors, such as reactor configuration, kinetics, fouling processes, economic feasibility, and scaling issues
Design of Hydroxyxanthone Derivatives as Breast Cancer Inhibitors: A QSAR Modeling, Molecular Docking, Molecular Dynamics, MM-PBSA and ADMET Prediction Fatmasari, Nela; Hermawan, Faris; Jumina, Jumina; Kurniawan, Yehezkiel Steven; Pranowo, Harno Dwi; Puspitasari, Anita Dwi; Hastuti, Lathifah Puji; Marlina, Lala Adetia; Putra, Nicky Rahmana
Journal of Multidisciplinary Applied Natural Science Articles in Press
Publisher : Pandawa Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47352/jmans.2774-3047.283

Abstract

A comprehensive QSAR analysis, in conjunction with molecular docking, molecular dynamics simulations, MM-PBSA binding energy estimations, and ADMET profiling, was conducted to facilitate the development of novel anticancer agents based on hydroxyxanthone derivatives. Molecular and electronic descriptors were calculated using the DFT method with the 3-21G basis set. The best QSAR model identified several descriptors that significantly influence anticancer activity, including the atomic charges at positions C1, C3, C4a, and C7, as well as the highest occupied molecular orbital (HOMO), surface area (SA), molecular volume (VOL), and molecular weight (MW). This model was used to design novel hydroxyxanthone derivatives (X27 to X47). The docking result showed that compounds 7-bromo-3-hydroxy-1-(methylamino)-9H-xanthen-9-one (X43), 6-hydroxy-8-(methylamino)-9-oxo-9H-xanthene-2-carbonitrile (X44), and 3-hydroxy-7-mercapto-1-(methylamino)-9H-xanthen-9-one (X45) had stronger binding energy values than gefitinib as a native ligand. Gefitinib had a binding energy of -6.84 kcal/mol, while those compounds had values of -6.92, -7.12, and -6.92 kcal/mol, respectively. In a molecular dynamics simulation of 100 ns, compounds X43, X44, and X45 exhibited stability comparable to that of gefitinib against the EGFR protein. Additionally, the binding energy MM-PBSA of compound X43 was the lowest (-29.18 kcal/mol), followed by X44 (-27.11 kcal/mol), gefitinib (-26.06 kcal/mol), and X45 (-25.21 kcal/mol). Furthermore, these compounds met Lipinski's rule parameters and the minimal standard parameters in terms of ADMET characteristics, as predicted by physicochemical properties. In conclusion, compounds X43, X44, and X45 are potential anticancer agents for MDA-MB-231 breast cancer cells.