Claim Missing Document
Check
Articles

Found 14 Documents
Search

STUDI NUMERIK PENGARUH PENAMBAHAN GUIDE VANES TERHADAP KINERJA CIRCULAR ELBOW Imam Santoso; Setyo Nugroho; Prima Dewi Permatasari
PROSIDING SNAST Prosiding SNAST 2018
Publisher : IST AKPRIND Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The use of curved pipes will cause a pressure drop that is greater than the straight pipe of the same length. This is because there is a large pressure difference between the outer wall and the inner wall, eventually blocking the flow of fluid in the pipe. Pressure drop (pressure drop) of this flow is caused by friction (friction loss), separation (separation) and secondary flow (secondary flow). One method that can reduce pressure on the 900 elbow with the guide vane. The test module is in the form of a circular elbow 900 with a radius ratio (rc / Dh) = 1.2217 without a guide vane and uses a variety of number of guide vane. Numerical research uses computational fluid dynamics (CFD) method using computational software ANSYS FLUENT 14.5 with ReDolds number 9.8x104 ReDh. Fluid in the form of air with an inlet speed is uniform. From the results of this study obtained pressure drop, contour preset coefficient, velocity vector and pathline to determine the fluid flow phenomenon passing through the circular elbow with the addition of one guide vane, two guide vane, three guide vane, and without guide vane as a reference the phenomenon of the addition of guide vanes . The addition of guide vane gives the effect of increasing pressure drop. The biggest increase in pressure drop was the addition of three guide vane with an increase of 45.54% compared to the reference. The magnitude of this pressure drop occurs due to an increase in fluid friction with guide vanes and vortices which block the mainflow in circular elbow.
Studi Eksperimen Performa Helical Darrieus Turbin Farming Lohdy Diana; Prima Dewi Permatasari; Joke Pratilastiarso; Arrad Ghani Safitra
Jurnal Dinamika Vokasional Teknik Mesin Vol. 7 No. 2 (2022)
Publisher : Department of Mechanical Engineering Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/dinamika.v7i2.53500

Abstract

Mengadopsi potensi aliran air bawah laut, turbine farm dapat diterapkan pada saluran irigasi pertanian. Hal tersebut memiliki potensi dan realisasi yang lebih memungkinkan mengingat jumlah area pertanian di Indonesia masih sangat luas. Tujuan dari penelitian ini adalah untuk mengetahui performa turbin. Penelitian ini menggunakan rancang bangun Helical Darrieus Turbine Farm yaitu berupa saluran aliran air dan pembuatan beberapa turbin. Turbin arus laut dengan tipe helical darrieus sebanyak tiga buah diletakkan di dalam water flume. Kondisi dan geometri water flume dilakukan pendekatan sesuai dengan kondisi aktual saluran irigrasi pertanian yaitu kecepatan air 0.4 m/s. Penelitian dilakukan secara eksperimen di dalam laboratorium. Hasil penelitian menunjukkan pada kecepatan putar terbesar yaitu sebesar 22 rpm, didapatkan nilai torsi 0.035 Nm. Hubungan antara tip speed ratio dengan koefisien torsi menunjukkan tren yang meningkat. Nilai tertinggi koefisien torsi hasil pengujian adalah 0.065. Pada TSR maksimal nilai Cp juga maksimal. Koefisien performa maksimal pada turbin sebesar 0.051. Berdasarkan hasil tersebut desain turbin memerlukan modifikasi dengan memperpanjang jarak antar turbin sehingga menghasilkan performa yang lebih tinggi.
EXPERIMENTAL STUDY OF REFRIGERANT REPLACEMENT FROM R-22 TO R-290 HYDROCARBON IN DOMESTIC AC Arrad Ghani Safitra; Prima Dewi Permatasari; Teguh Hady Ariwibowo; Lohdy Diana; Nabila Haninda Az Zahra; Lovyta Putri Adianti
Jurnal Dinamika Vokasional Teknik Mesin Vol. 8 No. 1 (2023)
Publisher : Department of Mechanical Engineering Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/dinamika.v8i1.65204

Abstract

Most of the refrigerant used in split-type AC machines is HCFC type R-22, which can potentially damage the ozone layer and global warming. Musicool-22 is a trade name for the hydrocarbon refrigerant R-290, an alternative refrigerant that can replace R-22. Tests were carried out on the test equipment by comparing R-22 and Musicool-22 with the same variation of thermal load. Based on the test, the performance of the two working fluids can be determined by determining the coefficient of performance (COP) and comparing it with various cooling loads. In addition, it is proven that using Musicool-22 can save electrical energy and the power value of the compressor. The data measured are temperature, pressure, voltage, and electric current. Based on the results of calculations carried out by changing R-22 to Musicool-22, it shows that the COP value increases. The highest COP of R-22 is 2.45 at an 80-Watt load, and Musicool-22 is 4.21 at a 320-Watt load. The application of Musicool-22 can save electrical energy by 15.40%. Moreover, it saved electricity usage costs of IDR 44,450.53 per month.
Analisis Desain Push Pull Konverter pada Fuel Cell untuk Battery Charger Controller Permatasari, Prima Dewi; Aprilliyanto, Bagas; Putra, Firdaus Fhudoli; Prasetya, Hendrik Elvian Gayuh; Pratilastiarso, Joke
Setrum : Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer Vol 14, No 1 (2025): Edisi Juni 2025
Publisher : Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/setrum.v14i1.29347

Abstract

Fuelcell adalah bentuk sederhana dari teknologi konversi energi  yang menggunakan hidrogen sebagai bahan bakar untuk menghasilkan listrik. Selain itu juga berguna sebagai pengisi baterai yang dapat digunakan dalam bidang otomotif. Penelitian ini menyajikan pemodelan fuelcell dan pushpull konverter untuk mendapatkan effisiensi daya yang tinggi dengan menggunakan software matlab simulink. Dan melakukan integrasi antara fuelcell (BCS 500W PEM) dan pushpull konverter dengan jenis baterai yang digunakan adalah lithium-ion (LiFePO₄) berkapasitas 40 Ah dan tegangan nominal 73,6 volt. Pada penelitian ini,  memvariasikan temperature operasi fuelcell, yaitu 60°C = 333K, 80°C = 353K dan 100°C = 373K. Serta memvariasikan tekanan bahan bakar fuelcell (H2) yaitu 1 atm, 2 atm, 3 atm. Sistem baterai menampilkan pengisian dan pengosongan pada SOC yang  sudah ditentukan. Efisiensi konverter dalam konversi daya sangat baik 91,11%.