Claim Missing Document
Check
Articles

Found 12 Documents
Search

Enhancing Low-Resolution Images of Mustard Leaves Affected by Pests with Thermal Sensor using Super-Resolution Convolutional Neural Network Optimization Susanto, Fredy; Nurtantio, Pulung; Soeleman, Arief; Pujiono, Pujiono; Noersasongko, Edi; Dedi, Dedi
JOIV : International Journal on Informatics Visualization Vol 9, No 3 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.3.2841

Abstract

With urban areas facing limited agricultural land, hydroponic systems offer a solution to increase food storage and variety. Hydroponics, a farming technique that relies on water as a growing medium rather than soil, provides essential nutrients and oxygen for plants. This paper explores the use of thermal sensors to capture images of mustard leaves in a hydroponic system. In addition, it also explores thermal sensor images. These images are analyzed to detect pest attacks, with red leaves indicating the presence of pests and green/blue leaves unaffected by pests. These pests emit hot air; consequently, they turn red. The method of increasing resolution is to compare the Long Short-Term Memory (LSTM) algorithm with the Super-Resolution Convolutional Neural Network (SR-CNN) to improve the quality of images obtained from low-resolution sensors (AMG8833/Grid-EYE). The results show that the SR-CNN method is better than the LSTM (Long Short-Term Memory) method, although limitations remain due to the sensor resolution. After conducting the research, it could be observed that using LSTM resulted in a Mean Square Error (MSE) value of 0.001551685, while SR-CNN indicated an MSE value of 8.873. Furthermore, LSTM produces a Peak Signal-to-Noise Ratio (PSNR) value of 37.10797726, whereas SR-CNN achieves a PSNR of 39.199. The accuracy rates (SSIM) for LSTM and SR-CNN are 0.991538522961364 and 0.997747, respectively. These findings show that using the SR-CNN algorithm can effectively improve the quality of images produced by thermal sensors, even though the sensor pixel capacity is limited.
Classification of Breast Cancer Histopathology Images with Attention-Based Multiple Instance Learning Method Setiyani, Safira Hasna; Noersasongko, Edi; Affandy
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 4, November 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i4.2310

Abstract

Breast cancer is one of the deadliest types of cancer among women worldwide. Early detection plays a crucial role in increasing the chances of successful treatment and reducing the risk of death. Various efforts have been made by both the general public and medical professionals to raise awareness, promote early screening, and ensure timely medical intervention. With advances in technology, the use of computer-based systems, particularly in the field of medical image analysis, has become increasingly important. One such application is histopathological image analysis to support the diagnostic process in breast cancer cases. Histopathological image classification has gained significant attention from researchers in recent years, and various machine learning and deep learning techniques have been applied to improve its accuracy. Convolutional Neural Networks (CNNs), as part of the deep learning framework, have shown promising results in identifying tissue patterns in histopathological images. However, despite their high accuracy, CNNs are often less interpretable, making it difficult to understand the reasoning behind their predictions—especially when dealing with subtle features such as small spots, dots, or fine lines that may be overlooked. This study addresses these limitations by proposing a method that not only classifies histopathological images with high accuracy but also enhances readability through localization techniques. The goal is to make the classification process more transparent and clinically useful. Using widely recognized datasets like BreakHIS, the proposed method achieves a classification accuracy of up to 97.50%, demonstrating its potential as a reliable tool in medical diagnostics and breast cancer research.