Claim Missing Document
Check
Articles

Found 5 Documents
Search

Pembuatan Alat Otomatis Hand Sanitizer sebagai Salah Satu Antisipasi Penyebaran COVID-19 di Politeknik Negeri Batam Budiana Budiana; Abdullah Sani; Daniel Sutopo Pamungkas; Muhammad Prihadi Eko Wahyudi; Lindawani Siregar; Sumantri Kurniawan Risandriya; Kamarudin Kamarudin; Nur Sakinah Asaad; Nadhrah Wivanius; Rizky Pratama Hudhajanto; Aditya Gautama Darmoyono; Rahmi Mahdaliza; Ardian Budi Kusuma Atmaja; Arif Wahyu Budiarto; Yulfiana Harini; Bayu Prayogo Setiawan; Indra Daulay; Dodi Radot Lumbantoruan
Journal of Applied Electrical Engineering Vol 4 No 2 (2020): JAEE, December 2020
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaee.v4i2.2730

Abstract

COVID-19 menyerang manusia pada akhir tahun 2019. Penyebaran COVID-19 terjadi melalui droplet/cairan yang keluar dari mulut/hidung manusia. Antisipasi penyebaran COVID-19 dilakukan dengan menerapkan pola hidup bersih dan sehat. Salah satu caranya adalah dengan mencuci tangan menggunakan hand sanitizer. Penggunaan hand sanitizer di tempat umum memungkinkan terjadinya kontak fisik antar pengguna sehingga diperlukan cara untuk mengurangi kontak fisik tersebut. Cara yang bisa diterapkan adalah dengan menggunakan hand sanitizer otomatis. Prinsip dari hand sanitizer otomatis ini adalah ketika tangan didekatkan dengan botol hand sanitizer maka secara otomatis cairan akan keluar dengan sendirinya ke telapak tangan. Berdasarkan hasil penelitian yang telah dilakukan, hand sanitizer telah berhasil dibuat dan dapat digunakan di Politeknik Negeri Batam.
Deteksi Gestur Tangan Berbasis Pengolahan Citra Abdullah Sani; Suci Rahmadinni
Jurnal Rekayasa Elektrika Vol 18, No 2 (2022)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2649.209 KB) | DOI: 10.17529/jre.v18i2.25147

Abstract

Hand sign language is a medium of communication for people with disabilities (deaf and speech impaired). However, in social practice, persons with disabilities may have to communicate with non-disable persons who do not understand sign language. These problems can be overcome with the help of translators or normal people learning sign language through existing media such as videos. Unfortunately, this method will probably cost a lot of money and time. In respons to this issue, the present study designed a sistem to detect hand gestures based on image processing. The method used is the You Only Look Once (YOLO) algorithm. The YOLO algorithm can detect and classify objects at once without being influenced by the light intensity and background of the object. This algorithm is a deep learning method that is more accurate than other deep learning methods. From this research, the system can detect and classify hand gestures with different backgrounds, light intensity, and distances with an accuracy rate above 90%.
Deteksi Gestur Tangan Berbasis Pengolahan Citra Abdullah Sani; Suci Rahmadinni
Jurnal Rekayasa Elektrika Vol 18, No 2 (2022)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v18i2.25147

Abstract

Hand sign language is a medium of communication for people with disabilities (deaf and speech impaired). However, in social practice, persons with disabilities may have to communicate with non-disable persons who do not understand sign language. These problems can be overcome with the help of translators or normal people learning sign language through existing media such as videos. Unfortunately, this method will probably cost a lot of money and time. In respons to this issue, the present study designed a sistem to detect hand gestures based on image processing. The method used is the You Only Look Once (YOLO) algorithm. The YOLO algorithm can detect and classify objects at once without being influenced by the light intensity and background of the object. This algorithm is a deep learning method that is more accurate than other deep learning methods. From this research, the system can detect and classify hand gestures with different backgrounds, light intensity, and distances with an accuracy rate above 90%.
Stasiun Pemantau Cuaca Berbasis IoT (Internet of Things) dengan Metode Exponential Smoothing Firdaus Firdaus; Abdullah Sani
Journal of Applied Electrical Engineering Vol. 5 No. 2 (2021): JAEE, December 2021
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaee.v5i2.3172

Abstract

Cuaca merupakan salah satu faktor yang mempengaruhi kelancaran suatu aktifitas. Sehingga diperlukan sebuah alat yang dapat memprediksi kondisi cuaca secara real time dengan berbasis IoT (Internet of Things) yang dapat di akses menggunakan aplikasi Blynk yang telah ditanam di smartphone. Kemudian untuk memastikan keakurasian peramalan maka digunakan metode exponential smoothing. Untuk mengetahui keefektifan metode yang digunakan dilakukan perbandingan pengukuran dengan metode exponential smoothing dan tanpa menggunakan metode. Berdasarkan penelitian yang dilakukan, nilai persentase error dengan menggunakan metode exponential smoothing lebih baik dari pada tanpa menggunakan metode apapun dalam melakukan peramalan cuaca. Pengukuran suhu dengan metode exponential memiliki persentase error sebesar 3.57% sedangkan pengukuran suhu tanpa menggunakan metode memiliki persentase error sebesar 7.41%. Untuk pengukuran kelembaban udara dengan metode exponential memiliki persentase error sebesar 6.74% sedangkan pengukuran kelembaban udara tanpa menggunakan metode memiliki persentase error sebesar 10.07%. Dan pengukuran kecepatan angin dengan metode exponential memiliki persentase error sebesar 12.55% sedangkan pengukuran kecepatan udara tanpa menggunakan metode memiliki persentase error sebesar 34.53%.
Prototipe Deteksi Ketersediaan Slot Parkir Berbasis Pengolahan Citra Abdullah Sani; Dzaki Hafizh Ayyasy
Journal of Applied Electrical Engineering Vol. 6 No. 2 (2022): JAEE, December 2022
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaee.v6i2.4452

Abstract

Tempat parkir adalah sarana pokok di setiap penyedia layanan sarana dan prasarana seperti pusat perbelanjaan, pelabuhan, bandara, dan lain-lain. Tempat parkir yang luas bahkan dengan pola bertingkat menjadikan pengemudi kesulitan menemukan slot parkir kosong apabila slot parkir yang tersisa tinggal sedikit. Pada percobaan kali ini, penulis merancang sistem pendeteksi alamat parkir berbasis pengolahan citra atau image processing. Metode yang diterapkan untuk image processing adalah metode deep learning dengan algoritma YOLO atau disebut juga You Only Look Once. Algoritma YOLO mampu mendeteksi serta mengenali objek dengan background yang berbeda. Sistem kerja dari penelitian ini yaitu apabila alamat parkir terdeteksi oleh kamera menandakan slot parkir kosong, namun apabila alamat parkir tidak terdeteksi oleh kamera menandakan slot parkir tersebut sudah ada mobil yang menempati slot parkir tersebut. Dengan adanya penelitian ini diharapkan dapat membantu pengemudi mobil lebih cepat dalam menemukan slot parkir kosong. Berdasarkan hasil pengujian, penulis mendapatkan sistem yang dapat mendeteksi dan mengklasifikasi alamat parkir pada jarak yang berbeda dengan tingkat akurasi hingga 96%.