Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pressure Vessel Mechanical Design Case study for 10 kg/cm² Pressure and 179 C Temperature Sumanto Sumanto; Yuni Pita Asmiran; Pedro Da Silva; Hendra Gunawan; Acim Maulana
MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering Vol 3 No 3 (2021): Motivection : Journal of Mechanical, Electrical and Industrial Engineering
Publisher : Indonesian Mechanical Electrical and Industrial Research Society (IMEIRS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (518.492 KB) | DOI: 10.46574/motivection.v3i3.94

Abstract

Pressure vessel is a closed tube that holds pressure, both internal pressure and external pressure. This pressure vessel is designed to function as a reservoir for condensate or condensed water and convert it into steam or hot steam. This article discusses the design of a pressure vessel for a pressure of about 10 kg/cm² and a design temperature of 179oC. In the design of this pressure vessel, it includes determining the material to be used in the design, determining the allowable stress of each material used, determining the cylinder wall thickness, cylinder head or cover wall thickness, nozzle wall thickness, determining the maximum allowable working pressure limit. or maximum allowable working pressure and testing after the pressure vessel is finished, namely the hydrostatic test method. The design has been successfully carried out according to the provisions. Bejana tekan atau pressure vessel adalah suatu tabung tertutup penampung tekanan, baik tekanan dari dalam maupun tekanan dari luar bejana. Bejana tekan yang ini dirancang berfungsi sebagai penampung condensate atau air kondensasi dan mengubahnya menjadi steam atau uap panas. Pada artikel ini dibahas perancangan pressure vessel untuk tekanan sekitar 10 kg/cm² dan suhu rancang 179oC. Dalam perancangan bejana tekan ini meliputi pemilihan material yang akan digunakan dalam perancangan, menentukan tegangan yang diijinkan atau allowable stress dari setiap material yang digunakan, menentuan tebal dinding silinder, tebal dinding head atau penutup silinder, tebal dinding nozzle, menentuan batas tekanan kerja maksimum yang diijinkan atau maximum allowable working pressure dan pengujian setelah bejana tekan jadi yaitu dengan metode hydrostatic test. Dalam artikel ini perancangan secara numeris telah berhasil dilakukan dengan baik sesuai ketentuan.
Enhancement Material Removal Rate Optimization of Sinker EDM Process Parameters Using a Rectangular Graphite Electrode Sumanto Sumanto; Acim Maulana; Dodi Mulyadi; Khoirudin Khoirudin; Siswanto Siswanto; Sukarman Sukarman; Ade Suhara; Safril Safril
Jurnal Optimasi Sistem Industri Vol. 21 No. 2 (2022): Published in November 2022
Publisher : The Industrial Engineering Department of Engineering Faculty at Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/josi.v21.n2.p87-96.2022

Abstract

This article discusses the optimization of sinker electrical discharge machining (sinker EDM) processes using SPHC material that has been hardened. The sinker EDM method is widely employed, for example, in the production of moulds, dies, and automotive and aeronautical components. There is neither contact nor a cutting force between the electrode and the   work material in sinker EDM. The disadvantage of the sinker EDM is its low material removal rate. This work aims to optimize the material removal rate (MRR) using graphene electrodes in a rectangular configuration. The SPHC material was selected to determine the optimum MRR model of the sinker EDM input parameter. The Taguchi experimental design was chosen. The Taguchi technique used three input parameters and three experimental levels. Pulse current (I), spark on time (Ton), and gap voltage were among the input parameters (Vg). The graphite rectangle was chosen as an electrode material. The input parameter effect was evaluated by S/N ratio analysis. The result showed that pulse current has the most significant impact on material removal rate in the initial study, followed by spark on time and gap voltage. All input parameters are directly proportional to the MRR. For optimal material removal rate, the third level of pulse current, spark on time, and gap voltage must be maintained. In addition, the proposed Taguchi optimization model could be applied to an existing workshop floor as a simple and practical electronic tool for predicting wear and future research.