Aji H Wigena
Department of Statistics, IPB University, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PEMODELAN CLUSTERWISE REGRESSION PADA STATISTICAL DOWNSCALING UNTUK PENDUGAAN CURAH HUJAN BULANAN Victor Pandapotan Butar-butar; Agus M Soleh; Aji H Wigena
Indonesian Journal of Statistics and Applications Vol 3 No 3 (2019)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v3i3.310

Abstract

Statistical downscaling (SDS) is one of the developing models for rainfall estimation. The SDS model is a regression model used to analyze the relation of global (GCM output) and local data (rainfall). Rainfall has large variance so that clustering is needed to minimize the variance. One of the analytical methods that can be used in clustering rainfall estimation is cluster wise regression. There are three Methods for Clusterwise regression namely Linear Regresion, Finite Mixture Method (FMM) and Cluster-Weighted Method (CWM). This study used GCM outputs data namely CFRSv2 as a covariate. The response variable is rainfall data in four stations such as Bandung, Bogor, Citeko and Jatiwangi from BMKG. The purpose of this study is to increase the accuracy of rainfall estimation using the three methods and compare the clusterwise regression with PCR and PLS models. Based on the value of RMSEP, the clusterwise regression with FMM was the best method to estimate rainfall in four stations.
PEMODELAN AUTOREGRESIF SPASIAL MENGGUNAKAN BAYESIAN MODEL AVERAGING UNTUK DATA PDRB JAWA Sarimah Sarimah; Anik Djuraidah; Aji H Wigena
Indonesian Journal of Statistics and Applications Vol 3 No 3 (2019)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v3i3.376

Abstract

Economic data always contains spatial effects. Gross Regional Domestic Product (GRDP) in Java is one of economic data that describes spatial dependence between adjacent districts/cities. The method that is suitable for modeling GDRP is spatial regression with spatial dependence on lags that is spatial autoregressive. GDRP prediction used the Bayesian Model Averaging (BMA) method. The ten autoregressive spatial model that have highest posterior probability was chosen to determined the BMA model by posterior probability. The explanatory variables used in this study were (1) mean years of schooling (2) life expectancy (3) income per capita (4) local revenue (5) number of workers (6) district minimum salary. The results showed that the number of workers was chosen as a predictor for the ten models. The model that have highest posterior probability probability is 0.54 which contains five explanatory variables that are mean years of schooling, income per capita, local revenue, number of workers and district minimum salary and the pseudo R2 of the model is 0.696.