Novita Indah Saputri
Jurusan Matematika, Fakultas MIPA, Universitas Tanjungpura, Pontianak 78124, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Hasil Kali Matriks (Mod 2) pada Graf Roda, Graf Pertemanan dan Graf Bunga Fransiskus Fran; Novita Indah Saputri; Mariatul Kiftiah
Jambura Journal of Mathematics Vol 3, No 2: July 2021
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (584.658 KB) | DOI: 10.34312/jjom.v3i2.10468

Abstract

ABSTRAKPada artikel ini dibahas sifat-sifat hasil kali matriks (mod 2) terkait graf roda, graf pertemanan, dan graf bunga yang grafikal. Beberapa hasil yang diperoleh, A(Wn)A(Wn)(Mod 2) dan A(Wn)A(Sn)(Mod 2) grafikal apabila n=2k+1 dengan Sn merupakan graf bintang. Selanjutnya, diperoleh A(Wn)A(Go)(mod 2) dan A(Wn)A(G0)(mod 2) grafikal untuk semua n=3 dengan G0 adalah subgraf dari Wn dengan degG0v0=0, degG0vl=degWnvl, untuk 1= l = n. Hasil kali matriks (mod 2) yang grafikal juga diperoleh untuk graf pertemanan dan graf bunga dengan komplemen dan subgrafnya masing- masing. Hasil lebih umum diperoleh untuk kondisi sehingga A(G)A(G)(mod 2) grafikal. ABSTRACTIn this paper, we discussed the properties of the wheel, flower and friendship graphs for which the matrix product under modulo 2 was graphical. Let Sn be a star graph and G0 be a subgraph of Wn where degG0v0=0, degG0vl=degWnvl, for 1= l = n. We proved the matrix product A(Wn)A(Wo)(mod 2)  and A(Wn)A(Sn)(Mod 2) was graphical for n=2k+1 and the matrix product A(Wn)A(Go)(mod 2) and A(Wn)A(G0)(mod 2) was graphical for all n=3. For the next, a graphical matrix product (mod 2) was also obtained for the friendship graph and the flower graph with its complement and subgraph, respectively. As more general results were obtained for conditions such that A(G)A(G)(mod 2) was graphical.