Claim Missing Document
Check
Articles

Found 2 Documents
Search

Using k-Means and Self Organizing Maps in Clustering Air Pollution Distribution in Makassar City, Indonesia Suwardi Annas; Uca Uca; Irwan Irwan; Rahmat Hesha Safei; Zulkifli Rais
Jambura Journal of Mathematics Vol 4, No 1: January 2022
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1378.14 KB) | DOI: 10.34312/jjom.v4i1.11883

Abstract

Air pollution is an important environmental problem for specific areas, including Makassar City, Indonesia. The increase should be monitored and evaluated, especially in urban areas that are dense with vehicles and factories. This is a challenge for local governments in urban planning and policy-making to fulfill the information about the impact of air pollution. The clustering of starting points for the distribution areas can ease the government to determine policies and prevent the impact. The k-Means initial clustering method was used while the Self-Organizing Maps (SOM) visualized the clustering results. Furthermore, the Geographic Information System (GIS) visualized the results of regional clustering on a map of Makassar City. The air quality parameters used are Suspended Particles (TSP), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Surface Ozone (O3), and Lead (Pb) which are measured during the day and at night. The results showed that the air contains more CO, and at night, the levels are reduced in some areas. Therefore, the density of traffic, industry and construction work contributes significantly to the spread of CO. Air conditions vary, such as high CO levels during the day and TSP at night. Also, there is a phenomenon at night that a group does not have SO2 and O3 simultaneously. The results also show that the integration of k-Means and SOM for regional clustering can be appropriately mapped through GIS visualization.
K-Prototypes Algorithm for Clustering The Tectonic Earthquake in Sulawesi Island Suwardi Annas; Irwan Irwan; Rahmat H Safei; Zulkifli Rais
Jurnal Varian Vol 5 No 2 (2022)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/varian.v5i2.1908

Abstract

Natural disasters that had occurred in Indonesia consist of hydro-meteorology: floods, droughts, and landslides, geophysical: volcanic earthquakes and volcanic eruptions, and biological: epidemics. Regarding the tectonic earthquake on Sulawesi Island, there are at least 2 earthquake disasters that became national disasters, namely in Central Sulawesi and West Sulawesi in the range of 2017 to 2021. This study aims to cluster tectonic earthquakes on Sulawesi Island, from 2017 to 2020, as the basis for formulating disaster mitigation plans. This study used tectonic earthquake data from 2017 to 2020 obtained from BMKG Gowa, Indonesia. The variables used are magnitude, depth, and distance category. Because they are mixed variables, this study used a k-prototype algorithm. There are four clusters in 2017, six clusters in 2018, five clusters in 2019, and six clusters in 2020 based on the ratio of within-cluster distance against between-cluster distance. It can be related to the active fault on Sulawesi Island. The characteristics of clusters form each year are the greater magnitude of the earthquake, the deeper of deep and the category distance is dominated by the regional level.