Claim Missing Document
Check
Articles

Found 4 Documents
Search

Pembentukan Model Pohon Keputusan pada Database Car Evaluation Menggunakan Statistik Chi-Square Retno Maharesi
Contemporary Mathematics and Applications (ConMathA) Vol. 4 No. 1 (2022)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v4i1.34393

Abstract

The study discusses problems related to the formation of a decision tree based on a collection of evaluation data records obtained from a number of car buyers. This secondary data was obtained from the UCL machine learning website. The purpose of this research is to produce a prototype algorithm for obtaining an inductive decision tree based on Chi-square statistics. An inductive decision tree formation method based on the Chi-square contingency test was compared with a decision tree obtained using a machine learning algorithm which was done using RapidMiner5 software. The work to produce an inductive decision tree was carried out by first processing data using Microsoft excel and next processed using SPSS software, on the crosstabs descriptive menu. The results of the two methods provide some kind of similar rules, in terms of the order of priority of the variables that most influencing people's decision to accept an automotive product. The formation of the decision tree uses a random sampling of size 300 data records among 1729 respondent data records in the car evaluation database. The resulting decision tree should have a minimal structure like a binary tree. This is possible because its formation is based on the statistical inferential method, so it does not require a separate pruning process as an addition step in the C4.5 algorithm, which actually this algorithm also considers aspects of the statistical significance.
Implementasi Algoritma Decision Tree Cart Untuk Merekomendasikan Ukuran Baju Frida Alifia Oktavirahani; Retno Maharesi
JURIKOM (Jurnal Riset Komputer) Vol 9, No 1 (2022): Februari 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v9i1.3838

Abstract

The development of technology that is advancing rapidly today encourages the emergence of buying and selling processes that can be done online. The many conveniences that are felt in the process have made many people switch from buying and selling conventionally to buying and selling online. Clothing is one of the primary human needs that do not escape online sales. However, the obstacle experienced was when choosing the size, because when buying online the buyer could not try on the clothes, thus creating doubts in choosing the size of the clothes that matched the buyer's body size. Therefore, this study develops a smartphone-based application that is used to recommend clothing sizes. The stage that is passed to get the results, namely, the data training process will be carried out on the dataset used. Furthermore, it takes determinant variables that affect the size of a person's clothes, namely gender, weight, height, and body shape to be able to make predictions using previously trained datasets. The result of this study is a smartphone-based application that is useful for recommending clothing sizes. The test results using the Confusion Matrix for 21 test data taken randomly from 207 training data, showed an accuracy rate of 67%.
MODEL PENJADWALAN PROSES PRODUKSI JAMU SESUAI STANDAR CARA PEMBUATAN OBAT TRADISIONAL YANG BAIK (CPOTB) Rakhma Oktavina; Retno Maharesi
Jurnal Ilmiah Ekonomi Bisnis Vol 16, No 2 (2011)
Publisher : Universitas Gunadarma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (186.857 KB)

Abstract

Penelitian ini bertujuan untuk (1) mengidentifikasikan tahapan proses produksi jamu yang baik sesuai standar CPOTB, (2) mengidentifikasikan dan mengumpulkan data mengenai proses produksi, jenis aktivitas, dan informasi lain yang diperlukandari bagian arsip di beberapa perusahaan jamu yang telah memenuhi standar Cara Produksi Obat Tradisional yang Baik (CPOTB) pada proses produksinya, (3) membuat algoritma penjadualan proses produksi industri jamu yang memenuhi standar CPOTB dalam bentuk jaringan kerja. Tahap pertama penelitian adalah analisis kebutuhan, proses pengumpulan data mengenai proses produksi jamu, jenis aktivitas beserta durasinya di beberapa perusahaan jamu yang telah memenuhi standar CPOTB pada proses produksinya. Tahap berikutnya adalah perancangan model algoritma sistem penunjang keputusan penjadualan proses produksi industri jamu yangmemenuhi standar CPOTB dilakukan dengan menggunakan teknik analisis jaringan kerja yang menggabungkan teknik Projcet Evaluation and Review Technique (PERT) dan Critical Path Method (CPM). Hasil penelitian terhadap jamu kaplet menunjukkan bahwa tahapan pengendalian mutu dimulai dari persiapan simplisia (bahan baku jamu) hingga proses pengepakan. Implementasi model dilakukan dengan memasukkan input data yang bersifat variabel berupa waktu proses, jumlah sumber daya, dan biaya per aktivitas kegiatan untuk diproses menjadi informasi mengenai distribusidan total waktu, sumber daya, dan biaya, untuk dijadikan dasar pertimbangan bagi perusahaan yang bermaksud melakukan sertifikasi COPTB.Kata Kunci : CPOTB, jamu, analisis jaringan, PERT, CPM The study aims to (1) identify the stages of the production process of herbal based on Good Traditional Medicine Manufacturing Process (GTMMP), (2) identify and collect data of production process, types of activities, and other necessary information from the archives at some of herbal medicine company that meets the GTMMP standards in the production process, (3) constructs the production process schedulingalgorithms based on GTMMP standards. The first stage of research was the needs analysis, the process of collecting data of production process of herbal medicine, type of activity and its duration, the activities carried out, and other data obtained from the production of herbal medicine in several companies that have met the GTMMP 
MODEL EKSPONENSIAL ESTIMASI EFEK PEMBATASAN PARSIAL (PPKM) DAN VARIAN DELTA COVID-19 DI DKI JAKARTA Retno Maharesi
Jurnal THEOREMS (The Original Research of Mathematics) Vol 7, No 2 (2023)
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31949/th.v7i2.4433

Abstract

Sebagai penyakit menular yang dipicu oleh Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), kode genetika virus terus berevolusi hingga sampai pada varian dominan yang diketahui adalahvtipe Delta yang memperpanjang pandemi di seluruh dunia. Dibandingkan dengan varianlain seperti Alfa, Beta dan Omicron yang lebih baru, varian Delta adalah salah satu yang paling parah menyerang sistem imun tubuh manusia, seperti yang dapat dilihat di situs Worldometer di mana jumlah kematian harian yang tinggi di banyak negara. Kondisi ini mendorong pemerintah untuk mengambil keputusan yang sangat sulit melalui sejumlah kebijakan pembatasan mobilitas penduduk yang sangat ketat. Penelitian ini dimaksudkan untuk mengukur pengaruh jumlah tes harian, pengaruh varian delta COVID-19 dan penerapan pembatasan aktivitas parsial dan mobilitas masyarakat terhadap pertumbuhan harian kasus positif di Provinsi DKI Jakarta. Dalam penelitian ini, kasus positif harian dimodelkan sebagai fungsi pertumbuhan eksponensial basis 3yang estimasi parameternya dilakukan dengan menggunakan teknik regresi linierberganda. Hasil estimasi menunjukkan adanya pengaruh signifikan dengan taraf nyata 5 % dari varian Delta berdasarkan jumlah uji COVID-19 harian  terhadap jumlah kasus baru harian dengan faktor perkalian sekitar 2,6. Sedangkan pengaruh pembatasan sebagian aktivitas dan mobilitas masyarakat, secara kasar mampu secara signifikan dapat menekan hingga setengah dari potensi kasus positif harian yang mungkin terjadi.Kata kunci: virus varian delta, pembatasan aktivitas komunitas, jumlah kasus positif harian, jumlah tes harian