Bidawi Hasyim
Unknown Affiliation

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

FISHPOND AQUACULTURE INVENTORY IN MAROS REGENCY OF SOUTH SULAWESI PROVINCE Yennie Marini; - Emiyati; Teguh Prayogo; Rossi Hamzah; Bidawi Hasyim
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 10, No 1 (2013)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (791.245 KB) | DOI: 10.30536/j.ijreses.2013.v10.a1839

Abstract

Currently, fishpond aquaculture becomes an interesting business for investors because of its profit,  and  a  source  of  livelihood  for  coastal  communities.  Inventory  and  monitoring  of  fishpond aquaculture provide important baseline data to determine the policy of expansion and revitalization of the fishpond. The aim of this research was to conduct an inventory and monitoring of fishpond area inMaros regency of South Sulawesi province using Satellite Pour l’Observation de la Terre (SPOT -4) and Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Apeture Radar (PALSAR). SPOT image classification process was performed using maximum likelihood supervised classification  method and  the  density  slice  method  for ALOS  PALSAR.  Fishpond  area  from  SPOT data was  9693.58  hectares  (ha),  this  results  have  been  through  the  process  of  validation  and verification by the ground truth data. The fishponds area from PALSAR was 7080.5 Ha, less than the result  from  SPOT  data.  This  was  due  to  the  classification  result  of  PALSAR  data  showing someobjects around fishponds (dike, mangrove, and scrub) separately and were not combined in fishponds area  calculation.  Meanwhile, the  result  of  SPOT -4  image  classification  combined object  around fishponds area.
VARIABILITY AND VALIDATION OF SEA SURFACE TEMPERATURE ESTIMATED BY PATHFINDER ALGORITHM OF NOAA-AVHRR SATELLITE IN THE NORTH PAPUA WATERS Bisman Nababan; Bidawi Hasyim; Hilda I.N. Bada
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 8, (2011)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (558.444 KB) | DOI: 10.30536/j.ijreses.2011.v8.a1738

Abstract

Variability and validation of sea surface temperatures (SST) in north Papua waters were conducted using SST estimated by Pathfinder algorithm of NOAA AVHRR satellite and SST measurements from TAO buoy in 2001-2009. Satellite data (SST Pathfinder) were daily, weekly, and monthly composite with 4x4 km2 resolution and downloaded from http://poet.jpl.nasa.gov. In situ data (SST measurement from buoy TAO) were measured at a depth of 1.5 m and recorded every hour (http://www.pmel.noaa.gov/tao_deliv). The in situ data then converted into daily, weekly, and monthly average data. In general, the SST values of both satellite and in situ SST in the north Papua waters ranged between 27.10 - 31.90 °C. During the east season (June-September), SST values (27.90-31.90 °C) were generally higher than the SST values ( 27.10-30.13 °C) during the west season (December-February). In general, the SST values both day-time and night-time from in situ and the satellite measurements showed no significant differences except in waters close to the shore. The results also showed that the coefficient of determination values (R2) between the satellite and the in situ SST measurements were relatively low (65%) and up to 5% of RMSE. The relatively low correlation between in situ dan satellite SST measurements may be due to high cloud coverage (90-96%) in the north Papua waters so that SST satellite data become less representative of the in situ data. These results also indicated that the Pathfinder algorithm can not be used as a valid estimate of SST NOAA AVHRR satellite for the north Papua waters. Keywords: SST Pathfinder, NOAA AVHRR, Validation, TAO buoy, North Papua Waters
THE UTILIZATION OF LANDSAT 8 FOR MAPPING THE SURFACE WATERS TEMPERATURE OF GRUPUK BAY - WEST NUSA TENGGARA: WITH IMPLICATIONS FOR SEAWEEDS CULTIVATION Bidawi Hasyim; Syarif Budiman; Arlina Ratnasari; . Emiyati; Anneke K. S. Manoppo
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (646.604 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2671

Abstract

Locating a suitable site is the key to success in cultivating seaweed, as it is becomes one of the coastal and marine prospects for improving the national economy. Numerous factors such as water movement, substratum, depth, salinity, light intensity, surface water temperature, influence the growth of this aquatic plant, and should be considered while choosing a farming area. One of key parameters on studying sea water conditions is surface temperature distribution, as changes on temperature effecting physical, chemical, and biological condition of the sea water. Surface waters temperature is affected by radiation, and sun position, geographic, seasons, overcast, interaction process between air and waters, evaporation level, and wind blowing. It's rarely easy job to measure surface waters temperature, because often, researcher has to deal with strong winds and high waves. The objectives of this research is to do surface waters temperature mapping of Grupuk Bay – West Nusa Tenggara, using thermal infrared channel of Landsat8 data, which is supported by field observation data. Surface temperature measurement is conducted through field survey in conjunction with Landsat 8 orbit. Surface temperature calculation is carried out by using certain method issued by United States Geological Survey (USGS, 2013). Calculation result on Grupuk Bay's water surface temperature shows that it ranges from 28.00 to 30.00oC, while field survey result shows that it ranges from 28.27 to 29.69oC. This research shows that sea surface temperature measurement result based on Landsat8 data has nearly identical range with field survey result.
THE UTILIZATION OF LANDSAT 8 FOR MAPPING THE SURFACE WATERS TEMPERATURE OF GRUPUK BAY - WEST NUSA TENGGARA: WITH IMPLICATIONS FOR SEAWEEDS CULTIVATION Bidawi Hasyim; Syarif Budiman; Arlina Ratnasari; Emiyati; Anneke K. S. Manoppo
International Journal of Remote Sensing and Earth Sciences Vol. 12 No. 1 (2015)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2015.v12.a2671

Abstract

Locating a suitable site is the key to success in cultivating seaweed, as it is becomes one of the coastal and marine prospects for improving the national economy. Numerous factors such as water movement, substratum, depth, salinity, light intensity, surface water temperature, influence the growth of this aquatic plant, and should be considered while choosing a farming area. One of key parameters on studying sea water conditions is surface temperature distribution, as changes on temperature effecting physical, chemical, and biological condition of the sea water. Surface waters temperature is affected by radiation, and sun position, geographic, seasons, overcast, interaction process between air and waters, evaporation level, and wind blowing. It's rarely easy job to measure surface waters temperature, because often, researcher has to deal with strong winds and high waves. The objectives of this research is to do surface waters temperature mapping of Grupuk Bay – West Nusa Tenggara, using thermal infrared channel of Landsat8 data, which is supported by field observation data. Surface temperature measurement is conducted through field survey in conjunction with Landsat 8 orbit. Surface temperature calculation is carried out by using certain method issued by United States Geological Survey (USGS, 2013). Calculation result on Grupuk Bay's water surface temperature shows that it ranges from 28.00 to 30.00oC, while field survey result shows that it ranges from 28.27 to 29.69oC. This research shows that sea surface temperature measurement result based on Landsat8 data has nearly identical range with field survey result.
SITE SELECTION OF SEAWEED CULTURE USING SPOT AND LANDSAT SATELLITE DATA IN PARI ISLAND Bidawi Hasyim; Wawan K. Harsanugraha; Yennie Marini; Anneke K.S. Manoppo
International Journal of Remote Sensing and Earth Sciences Vol. 9 No. 2 (2012)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2012.v9.a1833

Abstract

One of several factors for seaweed culture success is to determine the suitable location for seaweed culture based on oceanographic parameters. The best location for seaweed culture is coastal waters with suitable requirements for total suspended solid (TSS), sea surface temperature (SST), and area with calm water that is sheltered from waves, strong current and predator, such as lagoon in the middle of an atoll. The purpose of this study was to locate the suitable area for seaweed culture in Pari island, Seribu island using SPOT and LANDSAT-TM data. The results showed that TSS in Pari island waters were in the range of 150 mg/l - 200 mg/l, SST in the range of 22-29°C, while coral reefs and lagoon was only available in some coastal locations. The analysis showed that most of Pari island waters were suitable for seaweed culture.
VARIABILITY AND VALIDATION OF SEA SURFACE TEMPERATURE ESTIMATED BY PATHFINDER ALGORITHM OF NOAA-AVHRR SATELLITE IN THE NORTH PAPUA WATERS Bisman Nababan; Bidawi Hasyim; Hilda I.N. Bada
International Journal of Remote Sensing and Earth Sciences Vol. 8 (2011)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2011.v8.a1738

Abstract

Variability and validation of sea surface temperatures (SST) in north Papua waters were conducted using SST estimated by Pathfinder algorithm of NOAA AVHRR satellite and SST measurements from TAO buoy in 2001-2009. Satellite data (SST Pathfinder) were daily, weekly, and monthly composite with 4x4 km2 resolution and downloaded from http://poet.jpl.nasa.gov. In situ data (SST measurement from buoy TAO) were measured at a depth of 1.5 m and recorded every hour (http://www.pmel.noaa.gov/tao_deliv). The in situ data then converted into daily, weekly, and monthly average data. In general, the SST values of both satellite and in situ SST in the north Papua waters ranged between 27.10 - 31.90 °C. During the east season (June-September), SST values (27.90-31.90 °C) were generally higher than the SST values ( 27.10-30.13 °C) during the west season (December-February). In general, the SST values both day-time and night-time from in situ and the satellite measurements showed no significant differences except in waters close to the shore. The results also showed that the coefficient of determination values (R2) between the satellite and the in situ SST measurements were relatively low (65%) and up to 5% of RMSE. The relatively low correlation between in situ dan satellite SST measurements may be due to high cloud coverage (90-96%) in the north Papua waters so that SST satellite data become less representative of the in situ data. These results also indicated that the Pathfinder algorithm can not be used as a valid estimate of SST NOAA AVHRR satellite for the north Papua waters.
FISHPOND AQUACULTURE INVENTORY IN MAROS REGENCY OF SOUTH SULAWESI PROVINCE Yennie Marini; Emiyati; Teguh Prayogo; Rossi Hamzah; Bidawi Hasyim
International Journal of Remote Sensing and Earth Sciences Vol. 10 No. 1 (2013)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2013.v10.a1839

Abstract

Currently, fishpond aquaculture becomes an interesting business for investors because of its profit, and a source of livelihood for coastal communities. Inventory and monitoring of fishpond aquaculture provide important baseline data to determine the policy of expansion and revitalization of the fishpond. The aim of this research was to conduct an inventory and monitoring of fishpond area inMaros regency of South Sulawesi province using Satellite Pour l’Observation de la Terre (SPOT -4) and Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Apeture Radar (PALSAR). SPOT image classification process was performed using maximum likelihood supervised classification method and the density slice method for ALOS PALSAR. Fishpond area from SPOT data was 9693.58 hectares (ha), this results have been through the process of validation and verification by the ground truth data. The fishponds area from PALSAR was 7080.5 Ha, less than the result from SPOT data. This was due to the classification result of PALSAR data showing someobjects around fishponds (dike, mangrove, and scrub) separately and were not combined in fishponds area calculation. Meanwhile, the result of SPOT -4 image classification combined object around fishponds area.
IDENTIFICATION OF FISHERY RESOURCES IN MADURA STRAIT BASED ON THE IMPLEMENTATION OF POTENTIAL FISHING ZONE INFORMATION FROM REMOTE SENSING Bidawi Hasyim; Maryani Hartuti; Sayidah Sulma
International Journal of Remote Sensing and Earth Sciences Vol. 6 (2009)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2009.v6.a1234

Abstract

Spatial information of Potential Fishing Zone (PFZ) was used to identify the prospective location in the Madura Strait, where the fishermen from Fish Landing Port (FLP) around the Madura Strait conducted fishing activities. PFZ was aimed to determine fishing location, to identify the type of pelagic fish resources which were dominantly caught in the MAdura Strait. Fish resources data were obtained by observing the FLP in the east of Madura Strait especially in Pondok Mimbo, Jangkar, Besuki, Probolinggo, Pamekasan, and Sumenep. Based on the application of PFZ spatial information and observation, the types of pelagic fish caught on west monsoon were dominated by Euthynnus spp, Decapterus spp, Ratsrellinger spp, and Trichiurus spp. In the first transition season, types of fish resources were a mix between Euthynnus spp, Decapterus spp, Rastrellinger spp, Sardinella longiceps, and Trichiurus spp, however Sardinella longiceps were still dominated the catches. During the east monsoon fish resources at the Madura Strait was also dominated by Sardinella longiceps. This condition occurred until the second month of the second transition season followed by the mixing among Sardinella longiceps, Euthynnus spp, Decapterus spp, Rastrellinger spp and Trichiurus spp. Keywords: Fish Landing Port, NOAA-AVHRR, Potential fishing zone