Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pemodelan dan Evaluasi Trend Forecasting Pada Kondisi Korban Kecelakaan Lalu Lintas Menggunakan Trend Moment dan Least Square Sancaka Prana Wisesa; Aditya Singgi Prayogi; Tresna Maulana Fahrudin
Jurnal Sistem Cerdas Vol. 1 No. 2 (2018): Internet of Things for Smart Society
Publisher : APIC

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1538.265 KB) | DOI: 10.37396/jsc.v1i2.14

Abstract

Kecelakaan lalu lintas merupakan salah satu resiko yang dihadapi oleh setiap pengendara bermotor. Bertumbuh pesatnya produksi dan pembelian kendaraan bermotor roda dua dan roda empat semakin menambah padatnya aktifitas di jalan raya serta arus lalu lintas. Hal tersebut mengakibatkan peluang terjadinya kecelakaan di jalan raya yang dipengaruhi beberapa faktor antara lain kualitas jalan, kelayakan kendaraan bermotor, dan kondisi pengendara bermotor. Satuan Lalu Lintas Kepolisian telah membuat kategori kondisi korban kecelakaan berdasarkan kejadian laka, korban meninggal dunia, korban luka berat, korban luka ringan dan kerugian materiil. Kategorisasi ini menjadi salah satu cara untuk membangun kewaspadaan terjadinya kecelakaan melalui pengolahan data dan informasi dengan membuat model prediksi kecelakaan menggunakan Metode Forecasting. Data kecelakaan lalu lintas yang digunakan pada penelitian ini didapatkan dari Satuan Lalu Lintas Polres Gresik periode tahun 2006-2013. Penelitian ini membandingkan pemodelan data untuk memprediksi terjadinya kecelakaan di tahun 2014 menggunakan Metode Trend Moment dan Least Square dimana kedua metode ini akan dinilai rasio erornya menggunakan perhitungan nilai MAPE (Mean Absolute Percentage Error). Hasil pemodelan prediksi data menggunakan Metode Trend Moment mendapatkan rasio eror terkecil berdasarkan kategori korban meninggal dunia sebesar 22.8%, sedangkan Metode Least Square mendapatkan rasio eror terkecil sebesar 29.4%.
Lyric Text Mining Of Dangdut: Visualizing The Selected Words And Word Pairs Of The Legendary Rhoma Irama’s Dangdut Song In The 1970s Era Tresna Maulana Fahrudin; Ali Ridho Barakbah
Systemic: Information System and Informatics Journal Vol. 4 No. 2 (2018): Desember
Publisher : Program Studi Sistem Informasi Fakultas Sains dan Teknologi, UIN Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1591.884 KB) | DOI: 10.29080/systemic.v4i2.432

Abstract

Dangdut is a new genre of music introduced by Rhoma Irama, Indonesian popular musician who was the Legendary dangdut singer in the 1970s era until now. The expression of Rhoma Irama’s lyric has themes of the human being, the way of life, love, law and human right, tradition, social equality, and Islamic messages. But interestingly, the song lyrics were written by Rhoma Irama in the 1970s were mostly on the love song themes. In order to prove this, it is necessary to identify the songs through several approaches to explore the selected word and the relationship between word pairs. If each Rhoma Irama’s lyric is identified in text mining field, the lyric text extraction will be an interesting knowledge pattern. We collected the lyric from web were used as datasets, and then we have done the data extraction to store the component of lyric including the part and line of the song. We successfully applied the most word frequencies in the form of data visualization including bar chart, word cloud, term frequency-inverse document frequency, and network graph. As a results, several word pairs that often was used by Rhoma Irama in writing his song including heart-love (19 lines), heart-longing (13 lines), heart-beloved (12 lines), love-beloved (12 lines), love-longing (11 lines).
Analisis dan Pemetaan Jumlah Penumpang Kereta Api di Indonesia Menggunakan Metode Statistik Deskriptif dan K-means Clustering: Analisis dan Pemetaan Jumlah Penumpang Kereta Api di Indonesia Menggunakan Metode Statistik Deskriptif dan K-means Clustering Benny Wijaya; Tresna Maulana Fahrudin; Aryo Nugroho
Jurnal Mantik Vol. 3 No. 2 (2019): Augustus: Manajemen, Teknologi Informatiak dan Komunikasi (Mantik)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (670.774 KB)

Abstract

The development of the population in Indonesia continues to increase, which will require more transportation facilities. PT. Kereta Api Indonesia (KAI) is one of the means of transportation in Indonesia. At present the railroad transportation facilities in Indonesia are still not comprehensive, the regions that have railroad transportation facilities are Java (Jabodetabek and outside Jabodetabek), and Sumatra. By taking data on the number of train passengers from the Central Statistics Agency (BPS), the analysis and mapping of the number of train passengers using descriptive statistics and K-means clustering was carried out in this study. This study produced 3 clusters in which each cluster has a measuring value. Cluster 0 is medium, cluster 1 is high, and cluster 2 is low. Calculated using k-means clustering produces a cluster of 0 there are 63, cluster 1 there is 47, and cluster 2 there are 46 with an accuracy of about 97.9%, and calculated using descriptive statistics to produce cluster 0 there are 108, cluster 1 there is 34, and cluster 2 exists 14 with an accuracy of about 93.6%