Evy Kamilah Ratnasari
Teknik Informatika, Fakultas Teknik, Universitas Dr. Soetomo, Surabaya

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

PENGENALAN PENY AKIT NODA PADA CITRA DAUN TEBU BERDASARKAN CIRI TEKSTUR FRACTAL DIMENSION CO-OCCURRENCE MATRIX DAN L*a*b* COLOR MOMENTS Ratnasari, Evy Kamilah; Ginardi, Hari; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 12, No 2, Juli 2014
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v12i2.a320

Abstract

Penyakit yang menyerang tebu dapat disebabkan oleh bakteri, jamur maupun virus. Penyakit noda merupakan penyakit pada tanaman tebu yang disebabkan oleh jamur dengan menampakkan lesi atau bercak pada permukaan daun. Penyakit noda tersebut dapat menghambat proses fotosintesis yang akan berakibat menurunkan produksi gula karena mempengaruhi pertumbuhan tebu. Upaya pengendalian dini dapat dilakukan dengan mengenali jenis penyakit melalui lesinya yang bermanfaat dalam menentukan tindakan penanganan yang tepat. Lesi yang disebabkan oleh penyakit noda masing-masing dapat dikenali secara visual karena memiliki ciri warna dan tekstur yang unik. Tetapi pengamatan secara visual memiliki beberapa kekurangan seperti subjektifitas dan kurang akurat. Penelitian ini mengusulkan pengenalan penyakit noda tanaman tebu yang terdiri dari noda cincin, noda karat, dan noda kuning berdasarkan fitur tekstur yang merupakan kombinasi dari konsep Gray Level Co-Occurrence Matrix (GLCM) dan dimensi fraktal yang dinamakan Fractal Dimension Co-Occurrence Matrix (FDCM). Sedangkan fitur warna didapatkan dari perhitungan statistik col or moments pada citra L*a*b*. Kombinasi fitur tersebut menghasilkan 12 fitur warna dan 6 fitur tekstur yang kemudian digunakan sebagai masukan klasifikasi k-Nearest Neighbor (KNN). Pengenalan penyakit noda pada tanaman tebu menggunakan metode tersebut dapat menghasilkan akurasi tertinggi 90%.
Segmentasi Citra menggunakan Support Vector Machine (SVM) dan Ellipsoid Region Search Strategy (ERSS) Arimoto Entropy berdasarkan Ciri Warna dan Tekstur Hakim, Lukman; Mutrofin, Siti; Ratnasari, Evy Kamilah
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 2, No 1 (2016): Januari-Juni
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (675.31 KB) | DOI: 10.26594/register.v2i1.440

Abstract

Segmentasi citra merupakan suatu metode penting dalam pengolahan citra digital yang bertujuan membagi citra menjadi beberapa region yang homogen berdasarkan kriteria kemiripan tertentu. Salah satu syarat utama yang harus dimiliki suatu metode segmentasi citra yaitu menghasilkan citra boundary yang optimal.Untuk memenuhi syarat tersebut suatu metode segmentasi membutuhkan suatu klasifikasi piksel citra yang dapat memisahkan piksel secara linier dan non-linear. Pada penelitian ini, penulis mengusulkan metode segmentasi citra menggunakan SVM dan entropi Arimoto berbasis ERSS sehingga tahan terhadap derau dan mempunyai kompleksitas yang rendah untuk menghasilkan citra boundary yang optimal. Pertama, ekstraksi ciri warna dengan local homogeneity dan ciri tekstur dengan menggunakan Gray Level Co-occurrence Matrix (GLCM) yang menghasilkan beberapa fitur. Kedua, pelabelan dengan Arimoto berbasis ERSS yang digunakan sebagai kelas dalam klasifikasi. Ketiga, hasil ekstraksi fitur dan training kemudian diklasifikasi berdasarkan label dengan SVM yang telah di-training. Dari percobaan yang dilakukan menunjukkan hasil segmentasi kurang optimal dengan akurasi 69 %. Reduksi fitur perlu dilakukan untuk menghasilkan citra yang tersegmentasi dengan baik. Kata kunci: segmentasi citra, support vector machine, ERSS Arimoto Entropy, ekstraksi ciri. Abstract Image segmentation is an important tool in image processing that divides an image into homogeneous regions based on certain similarity criteria, which ideally should be meaning-full for a certain purpose. Optimal boundary is one of the main criteria that an image segmentation method should has. A classification method that can partitions pixel linearly or non-linearly is needed by an image segmentation method. We propose a color image segmentation using Support Vector Machine (SVM) classification and ERSS Arimoto entropy thresholding to get optimal boundary of segmented image that noise-free and low complexity. Firstly, the pixel-level color feature and texture feature of the image, which is used as input to SVM model (classifier), are extracted via the local homogeneity and Gray Level Co-Occurrence Matrix (GLCM). Then, determine class of classifier using Arimoto based ERSS thresholding. Finally, the color image is segmented with the trained SVM model (classifier). This image segmentation result less satisfied segmented image with 69 % accuracy. Feature reduction is needed to get an effective image segmentation. Key word: image segmentation, support vector machine, ERSS Arimoto Entropy, feature extraction.
Klasifikasi penyakit noda pada citra daun tebu berdasarkan ciri tekstur dan warna menggunakan segmentation-based gray level co-occurrence matrix dan lab color moments Ratnasari, Evy Kamilah; Ginardi, Raden Venantius Hari; Fatichah, Chastine
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 1 (2017): Januari-Juni (3/7)
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1296.147 KB) | DOI: 10.26594/register.v3i1.575

Abstract

 Penyakit noda pada daun tanaman tebu menampakkan gejala berupa lesi atau bercak. Lesi tersebut menghambat proses fotosintesis daun dan dapat mengakibatkan menurunnya produksi gula. Oleh karena itu, dalam meningkatkan kualitas produksi gula dibutuhkan diagnosa dini untuk mengambil keputusan penanganan penyakit yang cepat dan tepat, sehingga dapat meminimalisir kerusakan daun yang signifikan akibat penyebaran penyakit tersebut. Sayangnya keterbatasan keberadaan ahli penyakit tanaman tebu yang berpotensi dalam mendiagnosa penyakit noda tidak dapat mengatasi hal tersebut. Penelitian ini mengusulkan diagnosa penyakit noda tanaman tebu menggunakan metode pemrosesan citra berdasarkan fitur tekstur Segmentation-based Gray Level Co-Occurrence Texture (SGLCM) dan LAB color moments. Metode yang diajukan terdiri dari ekstraksi ciri warna pada citra masukan yang akan menghasilkan 12 fitur warna dan ekstraksi ciri tekstur pada citra masukan yang tersegmentasi dan menghasilkan 24 fitur tekstur, kemudian gabungan fitur warna dan tekstur tersebut digunakan sebagai masukan klasifikasi k-Nearest Neighbor (kNN) untuk mengenali jenis penyakit noda pada citra daun tanaman tebu. Jenis penyakit noda terdiri dari noda cincin, noda karat, dan noda kuning yang memiliki karakteristik berbeda. Klasifikasi penyakit noda pada tanaman tebu  menggunakan metode tersebut dapat menghasilkan akurasi tertinggi 93%.   The sugarcane spot disease attack the sugarcane with appear as spots on the leaves, so this spots prevent the vital process of photosynthesis to take place and caused sugar production losses. Early diagnosis of this spot disease can improve the quality of sugar production. The diagnosis result can be used as decision reference to control the disease fast and accurately to minimize attack severe that can caused significant damage. Unfortunately, experts who are able to identify the diseases are often unavailable. This research attempted to identify the three sugarcane spot diseases (ring spot, rust spot, and yellow spot) using Segmentation-based Gray Level Co-Occurrence Texture (SGLCM) and LAB color moments. The SGLCM obtain 24 texture features of segmented image and color moments obtain 12 color features. This method achieved at least 93% accuracy when identifying the diseases using kNN classifier.
Segmentasi Citra menggunakan Support Vector Machine (SVM) dan Ellipsoid Region Search Strategy (ERSS) Arimoto Entropy berdasarkan Ciri Warna dan Tekstur Hakim, Lukman; Mutrofin, Siti; Ratnasari, Evy Kamilah
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 2, No 1 (2016): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v2i1.440

Abstract

Segmentasi citra merupakan suatu metode penting dalam pengolahan citra digital yang bertujuan membagi citra menjadi beberapa region yang homogen berdasarkan kriteria kemiripan tertentu. Salah satu syarat utama yang harus dimiliki suatu metode segmentasi citra yaitu menghasilkan citra boundary yang optimal.Untuk memenuhi syarat tersebut suatu metode segmentasi membutuhkan suatu klasifikasi piksel citra yang dapat memisahkan piksel secara linier dan non-linear. Pada penelitian ini, penulis mengusulkan metode segmentasi citra menggunakan SVM dan entropi Arimoto berbasis ERSS sehingga tahan terhadap derau dan mempunyai kompleksitas yang rendah untuk menghasilkan citra boundary yang optimal. Pertama, ekstraksi ciri warna dengan local homogeneity dan ciri tekstur dengan menggunakan Gray Level Co-occurrence Matrix (GLCM) yang menghasilkan beberapa fitur. Kedua, pelabelan dengan Arimoto berbasis ERSS yang digunakan sebagai kelas dalam klasifikasi. Ketiga, hasil ekstraksi fitur dan training kemudian diklasifikasi berdasarkan label dengan SVM yang telah di-training. Dari percobaan yang dilakukan menunjukkan hasil segmentasi kurang optimal dengan akurasi 69 %. Reduksi fitur perlu dilakukan untuk menghasilkan citra yang tersegmentasi dengan baik. Kata kunci: segmentasi citra, support vector machine, ERSS Arimoto Entropy, ekstraksi ciri. Abstract Image segmentation is an important tool in image processing that divides an image into homogeneous regions based on certain similarity criteria, which ideally should be meaning-full for a certain purpose. Optimal boundary is one of the main criteria that an image segmentation method should has. A classification method that can partitions pixel linearly or non-linearly is needed by an image segmentation method. We propose a color image segmentation using Support Vector Machine (SVM) classification and ERSS Arimoto entropy thresholding to get optimal boundary of segmented image that noise-free and low complexity. Firstly, the pixel-level color feature and texture feature of the image, which is used as input to SVM model (classifier), are extracted via the local homogeneity and Gray Level Co-Occurrence Matrix (GLCM). Then, determine class of classifier using Arimoto based ERSS thresholding. Finally, the color image is segmented with the trained SVM model (classifier). This image segmentation result less satisfied segmented image with 69 % accuracy. Feature reduction is needed to get an effective image segmentation. Key word: image segmentation, support vector machine, ERSS Arimoto Entropy, feature extraction.
Klasifikasi penyakit noda pada citra daun tebu berdasarkan ciri tekstur dan warna menggunakan segmentation-based gray level co-occurrence matrix dan lab color moments Ratnasari, Evy Kamilah; Ginardi, Raden Venantius Hari; Fatichah, Chastine
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 1 (2017): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v3i1.575

Abstract

 Penyakit noda pada daun tanaman tebu menampakkan gejala berupa lesi atau bercak. Lesi tersebut menghambat proses fotosintesis daun dan dapat mengakibatkan menurunnya produksi gula. Oleh karena itu, dalam meningkatkan kualitas produksi gula dibutuhkan diagnosa dini untuk mengambil keputusan penanganan penyakit yang cepat dan tepat, sehingga dapat meminimalisir kerusakan daun yang signifikan akibat penyebaran penyakit tersebut. Sayangnya keterbatasan keberadaan ahli penyakit tanaman tebu yang berpotensi dalam mendiagnosa penyakit noda tidak dapat mengatasi hal tersebut. Penelitian ini mengusulkan diagnosa penyakit noda tanaman tebu menggunakan metode pemrosesan citra berdasarkan fitur tekstur Segmentation-based Gray Level Co-Occurrence Texture (SGLCM) dan LAB color moments. Metode yang diajukan terdiri dari ekstraksi ciri warna pada citra masukan yang akan menghasilkan 12 fitur warna dan ekstraksi ciri tekstur pada citra masukan yang tersegmentasi dan menghasilkan 24 fitur tekstur, kemudian gabungan fitur warna dan tekstur tersebut digunakan sebagai masukan klasifikasi k-Nearest Neighbor (kNN) untuk mengenali jenis penyakit noda pada citra daun tanaman tebu. Jenis penyakit noda terdiri dari noda cincin, noda karat, dan noda kuning yang memiliki karakteristik berbeda. Klasifikasi penyakit noda pada tanaman tebu  menggunakan metode tersebut dapat menghasilkan akurasi tertinggi 93%.   The sugarcane spot disease attack the sugarcane with appear as spots on the leaves, so this spots prevent the vital process of photosynthesis to take place and caused sugar production losses. Early diagnosis of this spot disease can improve the quality of sugar production. The diagnosis result can be used as decision reference to control the disease fast and accurately to minimize attack severe that can caused significant damage. Unfortunately, experts who are able to identify the diseases are often unavailable. This research attempted to identify the three sugarcane spot diseases (ring spot, rust spot, and yellow spot) using Segmentation-based Gray Level Co-Occurrence Texture (SGLCM) and LAB color moments. The SGLCM obtain 24 texture features of segmented image and color moments obtain 12 color features. This method achieved at least 93% accuracy when identifying the diseases using kNN classifier.