p-Index From 2021 - 2026
8.003
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Informatika Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi Jurnal Teknik ITS IPTEK Journal of Science IPTEK Journal of Proceedings Series IPTEK The Journal for Technology and Science Techno.Com: Jurnal Teknologi Informasi MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmiah Mikrotek Jurnal Simantec Jurnal Ilmiah Kursor Scan : Jurnal Teknologi Informasi dan Komunikasi Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Register: Jurnal Ilmiah Teknologi Sistem Informasi EMITTER International Journal of Engineering Technology Jurnal Inspiration Briliant: Jurnal Riset dan Konseptual Journal of Development Research Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi INTEGER: Journal of Information Technology Seminar Nasional Teknologi Informasi Komunikasi dan Industri JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal ULTIMATICS Explore IT : Jurnal Keilmuan dan Aplikasi Teknik Informatika Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) CCIT (Creative Communication and Innovative Technology) Journal SPIRIT ILKOMNIKA: Journal of Computer Science and Applied Informatics Indonesian Journal of Electrical Engineering and Computer Science Jurnal Teknik Informatika (JUTIF) Journal of Technology and Informatics (JoTI) Melek IT: Information Technology Journal Jurnal Nasional Teknik Elektro dan Teknologi Informasi Journal Research of Social Science, Economics, and Management Sewagati RESLAJ: Religion Education Social Laa Roiba Journal Jurnal Indonesia : Manajemen Informatika dan Komunikasi
Claim Missing Document
Check
Articles

Modifikasi Ant Colony Optimization Berdasarkan Gradient Untuk Deteksi Tepi Citra Liantoni, Febri; Suciati, Nanik; Fatichah, Chastine
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (557.421 KB)

Abstract

Abstract. Ant Colony Optimization (ACO) is an optimization algorithm which can be used for image edge detection. In traditional ACO, the initial ant are randomly distributed. This condition can cause an imbalance ants distribution. Based on this problem, a modified ant distribution in ACO is proposed to optimize the deployment of ant based gradient. Gradient value is used to determine the placement of the ants. Ants are not distributed randomly, but are placed in the highest gradient. This method is expected to be used to optimize the path discovery. Based on the test results, the use of the proposed ACO modification can obtain an average value of the Peak Signal to Noise Ratio (PSNR) of 12.724. Meanwhile, the use of the traditional ACO can obtain an average value of PSNR of 12.268. These results indicate that the ACO modification is capable of generating output image better than traditional ACO in which ants are initially distributed randomly.Keywords: Ant Colony Optimization, gradient, Edge Detection, Peak Signal to Noise Ratio Abstrak. Ant Colony Optimization (ACO) merupakan algoritma optimasi, yang dapat digunakan untuk deteksi tepi pada citra Pada ACO tradisional, semut awal disebarkan secara acak. Kondisi ini dapat menyebabkan ketidakseimbangan distribusi semut. Berdasarkan permasalahan tersebut, modifikasi distribusi semut pada ACO diusulkan untuk mengoptimalkan penempatan semut berdasarkan gradient. Nilai gradient digunakan untuk menentukan penempatan semut. Semut tidak disebar secara acak akan tetapi ditempatkan di gradient tertinggi. Cara ini diharapkan dapat digunakan untuk optimasi penemuan jalur. Berdasarkan hasil uji coba, dengan menggunakan ACO modifikasi yang diusulkan dapat diperoleh nilai rata-rata Peak Signal to Noise Ratio (PSNR) 12,724. Sedangkan, menggunakan ACO tradisional diperoleh nilai rata-rata PSNR 12,268. Hasil ini menunjukkan bahwa ACO modifikasi mampu menghasilkan citra keluaran yang lebih baik dibandingkan ACO tradisional yang sebaran semut awalnya dilakukan secara acak.Kata Kunci: Ant Colony Optimization, gradient, deteksi tepi, Peak Signal to Noise Ratio
PEMBOBOTAN KALIMAT BERDASARKAN FITUR BERITA DAN TRENDING ISSUE UNTUK PERINGKASAN MULTI DOKUMEN BERITA Hayatin, Nur; Fatichah, Chastine; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 13, No 1, Januari 2015
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v13i1.a386

Abstract

Ringkasan berita diartikan sebagai teks yang dihasilkan dari satu atau lebih kalimat yang menyampaikan informasi penting dari berita. Salah satu fase penting dalam peringkasan adalah pembobotan kalimat (sentence scoring). Dimana pada peringkasan berita, metode pembobotannya sebagian besar menggunakan fitur dari berita sendiri. Padahal dalam satu topik berita dimungkinkan adanya multiple issue. Dari multiple issue biasanya hanya ada satu isu yang menjadi pokok pembicaraan yang disebut dengan Trending Issue. Trending Issue inilah yang harusnya dipertimbangkan pada proses peringkasan berita sehingga ringkasan yang dihasilkan lebih koheren. Penelitian ini bertujuan untuk meringkas multi berita menggunakan metode pembobotan berdasarkan Trending Issue dengan tetap mempertimbangkan fitur penting berita, yaitu word frequency, TF-IDF, posisi kalimat, dan kemiripan kalimat terhadap judul (NeFTIS). Dimana Trending Issue didapatkan dari data Twitter dengan cara mengelompokkan tweets kemudian melakukan ekstraksi isu pada tiap kelompok yang terbentuk. Selanjutnya tiap isu diberikan bobot menggunakan konsep Cluster Importance (CI). Isu dengan bobot terbesar yang akan dipilih sebagai Trending Issue. Ada 5 tahap yang dilakukan untuk menghasilkan ringkasan multi berita dengan menggunakan NeFTIS, yaitu ekstraksi Trending Issue, seleksi berita, ekstraksi fitur berita, penghitungan total bobot kalimat, dan penyusunan ringkasan. Untuk mengukur kualitas sistem digunakan metode evaluasi ROUGE-1 dengan menganalisa performa dari hasil ringkasan dengan menggunakan metode pembobotan NeFTIS dibandingkan dengan hasil ringkasan dengan hanya menggunakan fitur berita (NeFS). Hasil rata-rata max-ROUGE-1 untuk seluruh variasi jumlah kalimat yang menyusun ringkasan (n) menunjukan bahwa metode pembobotan NeFTIS lebih akurat dibanding dengan metode pembobotan NeFS dengan nilai rata-rata max-ROUGE-1 terbesar 0.8201 untuk n=30.
SELEKSI FITUR MENGGUNAKAN EKSTRAKSI FITUR BENTUK, WARNA, DAN TEKSTUR DALAM SISTEM TEMU KEMBALI CITRA DAUN Sari, Yuita Arum; Dewi, Ratih Kartika; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 12, No 1, Januari 2014
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1003.264 KB) | DOI: 10.12962/j24068535.v12i1.a39

Abstract

Fitur yang digunakan untuk mengenali jenis daun meliputi bentuk, warna, dan tekstur. Tidak semua jenis fitur perlu digunakan untuk melakukan komputasi hasil ektra ksi, namun perlu diseleksi beberapa fitur yang paling berpengarauh dalam sistem temu kembali citra daun. Teknik seleksi fitur Correlation based Featured Selection (CFS) digunakan untuk melakukan pemilihan fitur berdasarkan korelasi antar fitur, sehingga dapat meningkatkan performa dari sistem temu kembali citra daun. Jenis seleksi fitur yang digunakan diantaranya menggunaka CFS, CFS dengan Genetic Search (GS), dan chi square. Analisis keterkaitan korelasi antar fitur melalui seleksi fitur juga dikombinasikan dengan penggunaan kedekatan dalam menghitung similaritas pada sistem temu kembali. Penggunaan kedekatan dengan Lp norm, ma nhattan, euclidean, cosine, dan mahalanobis. Hasil penelitian ini menunjukkan nilai temu kembali paling tinggi ketika menggunakan seleksi fitur CFS dengan pengukuran kedekatan mahalanobis.
SEGMENTASI PENYAKIT PADA CITRA DAUN TEBU MENGGUNAKAN FUZZY C MEANS – SUPPORT VECTOR MACHINE DENGAN FITUR WARNA a* Mentari, Mustika; Ginardi, Hari; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 13, No 1, Januari 2015
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v13i1.a387

Abstract

Penyakit pada pertanian tebu harus segera diatasi agar diperoleh peningkatan produktivitas. Deteksi penyakit yang secara manual dilakukan oleh ahli membutuhkan waktu dan biaya yang tinggi. Oleh karena itu, diperlukan otomatisasi sistem untuk mendeteksi penyakit pada tanaman tebu. Penelitian ini bertujuan untuk membangun sistem yang secara otomatis mampu melakukan segmentasi citra daun tebu berpenyakit menggunakan Fuzzy C Means (FCM)-Support Vector Machine (SVM) dengan fitur warna a*. Kombinasi FCM-SVM dapat meningkatkan akurasi pada proses segmentasi dengan karakteristik penyakit daun tebu dengan pencahayaan yang tak seimbang akibat pengambilan secara outdoor. Segmentasi citra daun tebu berpenyakit memiliki beberapa tahapan yaitu praproses, pemilihan region of interest (ROI), ekstraksi fitur, dan segmentasi. Tahap praproses melakukan pengambilan bagian tulang daun serta penghapusan bagian tulang daun, kemudian pemilihan ROI menunjukan dominasi area penyakit pada daun menggunakan overlapping window seluas 100x100 pixel. Metode kombinasi FCM dan SVM digunakan untuk segmentasi daun tebu berpenyakit, dimana FCM digunakan untuk segmentasi daun tebu pada data training. Hasil segmentasi tersebut digunakan sebagai label data pada tahap kedua bersama dengan data testing menggunakan metode klasifikasi SVM. Metode segmentasi yang diusulkan mampu menunjukkan rata-rata akurasi yang tinggi pada 30 citra daun tebu berpenyakit, yaitu sebesar76%. Sistem yang dibangun selanjutnya digunakan pada deteksi penyakit sebagai referensi untuk ketepatan permasalahan pertanian yang membutuhkan sistem deteksi penyakit sejak dini.
EKSTRAKSI KATA KUNCI BERDASARKAN HIPERNIM DENGAN INISIALISASI KLASTER MENGGUNAKAN FUZZY ASSOCIATION RULE MINING PADA PENGELOMPOKAN DOKUMEN Rozi, Fahrur; Fatichah, Chastine; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 13, No 2, Juli 2015
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v13i2.a488

Abstract

Pertumbuhan dunia digital dalam dokumen tekstual terutama di World Wide Web mengalami pertumbuhan pesat. Pen-ingkatan dokumen tekstual ini menyebabkan terjadinya penumpukan informasi, sehingga diperlukan sebuah pengorgan-isasian yang efisien untuk pengelolaan dokumen tekstual. Salah satu metode yang dapat mengelompokkan dokumen dengan tepat adalah menggunakan fuzzy association rule. Tahap ekstraksi kata kunci serta tipe fuzzy yang digunakan berpengaruh terhadap kualitas pengelompokan dokumen. Penggunaan hipernim dalam ekstraksi kata kunci untuk mendapatkan suatu klaster label dapat memperluas makna dari klaster label, sehingga dapat diperoleh suatu meaningful klaster label, selain itu ambiguitas dan uncertainties yang terjadi di dalam aturan fuzzy logic systems (FLS) tipe-1 dapat diatasi dengan fuzzy set tipe-2. Penelitian ini mengusulkan sebuah metode yaitu ekstraksi kata kunci berdasarkan hipernim dengan inisialisasi klaster menggunakan fuzzy association rule mining pada pengelompokan dokumen. Metode ini terdiri dari empat tahap, yaitu : preprocessing dokumen, ekstraksi key terms dari hipernim, ekstraksi kandidat klaster, dan konstruksi klaster tree. Pengujian terhadap metode ini dilakukan dengan tiga jenis data berbeda, yaitu Classic, Reuters, dan 20 Newsgroup. Pengujian dilakukan dengan membandingkan nilai overall f-measure dari metode tanpa hipernim (level 0), hipernim level 1, dan hipernim level 2. Berdasarkan pengujian didapatkan bahwa penggunaan hipernim dalam ektraksi kata kunci mampu menghasilkan rata-rata overall f-measure sebesar 0.5783 untuk data classic, 0.4001 untuk data reuters, dan 0.5269 untuk data 20 newsgroup.
PENGENALAN PENY AKIT NODA PADA CITRA DAUN TEBU BERDASARKAN CIRI TEKSTUR FRACTAL DIMENSION CO-OCCURRENCE MATRIX DAN L*a*b* COLOR MOMENTS Ratnasari, Evy Kamilah; Ginardi, Hari; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 12, No 2, Juli 2014
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v12i2.a320

Abstract

Penyakit yang menyerang tebu dapat disebabkan oleh bakteri, jamur maupun virus. Penyakit noda merupakan penyakit pada tanaman tebu yang disebabkan oleh jamur dengan menampakkan lesi atau bercak pada permukaan daun. Penyakit noda tersebut dapat menghambat proses fotosintesis yang akan berakibat menurunkan produksi gula karena mempengaruhi pertumbuhan tebu. Upaya pengendalian dini dapat dilakukan dengan mengenali jenis penyakit melalui lesinya yang bermanfaat dalam menentukan tindakan penanganan yang tepat. Lesi yang disebabkan oleh penyakit noda masing-masing dapat dikenali secara visual karena memiliki ciri warna dan tekstur yang unik. Tetapi pengamatan secara visual memiliki beberapa kekurangan seperti subjektifitas dan kurang akurat. Penelitian ini mengusulkan pengenalan penyakit noda tanaman tebu yang terdiri dari noda cincin, noda karat, dan noda kuning berdasarkan fitur tekstur yang merupakan kombinasi dari konsep Gray Level Co-Occurrence Matrix (GLCM) dan dimensi fraktal yang dinamakan Fractal Dimension Co-Occurrence Matrix (FDCM). Sedangkan fitur warna didapatkan dari perhitungan statistik col or moments pada citra L*a*b*. Kombinasi fitur tersebut menghasilkan 12 fitur warna dan 6 fitur tekstur yang kemudian digunakan sebagai masukan klasifikasi k-Nearest Neighbor (KNN). Pengenalan penyakit noda pada tanaman tebu menggunakan metode tersebut dapat menghasilkan akurasi tertinggi 90%.
PEMILIHAN KATA KUNCI UNTUK DETEKSI KEJADIAN TRIVIAL PADA DOKUMEN TWITTER MENGGUNAKAN AUTOCORRELATION WAVELET COEFFICIENTS Perdana, Rizal Setya; Fatichah, Chastine; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 13, No 2, Juli 2015
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v13i2.a484

Abstract

ABSTRAK Pada penelitian ini diajukan sebuah sistem pendeteksian kejadian yang berulang secara periodik (trivial) dengan pem-ilihan kata kunci kejadian penting menggunakan perhitungan korelasi (autocorrelation) pada wavelet coefficient. Pem-ilihan kata kunci dilakukan untuk menemukan kata yang berulang secara periodik yang dianggap sebagai kejadian trivi-al. Hasil penelitian menunjukkan pemilihan kata kunci dengan nilai confidence boundary yang paling optimal adalah 0.20 pada nilai autocorrelation sebesar 31. Proses yang dilakukan oleh pengguna untuk menemukan kata kunci dari sua-tu kejadian, secara manual pengguna harus membaca banyak tweet dalam jumlah tertentu. Kata kunci yang merepresen-tasikan suatu kejadian penting menentukan tingkat penting atau tidaknya suatu kejadian. Pengguna twitter memiliki keterbatasan untuk membaca seluruh tweet yang ada untuk mengetahui adanya suatu kejadian. Sistem deteksi kejadian pada twitter telah dilakukan oleh para peneliti dalam bidang analisis sosial media. Pendeteksian kejadian trivial atau tidak penting yang terpisah dari kejadian penting diperlukan untuk memisahkan dua kejadian tersebut. Proses eliminasi terhadap kejadian trivial akan menyisakan tweet kejadian penting. Salah satu kejadian trivial adalah kejadian yang ber-ulang secara periodik dimana membutuhkan suatu cara spesifik untuk mendeteksi kemunculannya. Pendeteksian kejadian dilakukan dengan memanfaatkan pola-pola temporal atau sinyal dari data Twitter dalam bentuk sinyal wavelet untuk mendeteksi kemunculan kejadian penting. Pada penelitian ini melakukan pendeteksian kejadian yang berulang secara periodik dengan pemilihan kata kunci untuk kejadian penting. Sistem pendeteksian kejadian penting melakukan perhitungan terhadap autocorrelation pada koefisien wavelet. Hasil perhitungan menunjukkan bahwa pemilihan kata kunci paling optimal pada nilai confidence boundary sebesar 0.20 dan nilai autocorrelation sebesar 31.
PENGENALAN SANDI MORSE DARI SINYAL ELECTROENCEPHALOGRAM YANG DIREKAM PERANGKAT NEUROSKY MINDWAVE MENGGUNAKAN DYNAMIC TIME WARPING Brilian, Ahmad Hayam; Tjandrasa, Handayani; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No 1, Januari 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i1.a511

Abstract

Komunikasi terjadi antara mahluk hidup yang satu dengan yang lain. Komunikasi yang sering digunakan oleh manusia adalah komunikasi verbal. Namun, beberapa orang yang menderita kecacatan parah tidak mampu berkomunikasi dengan baik. Penderita cacat parah tidak mampu menuliskan kata yang dikehendaki, apalagi untuk berkomunikasi secara lisan karena mengalami gangguan syaraf. Namun beberapa penderita cacat parah masih bisa mengedipkan matanya dengan normal. Sehingga perlu dibangun sebuah metode yang mampu menerjemahkan kedipan mata menjadi kata verbal. Salah satu bentuk pengkodean yang sering dipakai adalah sandi morse. Pemilihan ini disebabkan karena pola-pola yang terdapat pada sandi morse dapat ditirukan dengan menggunakan kedipan mata. Pada pengerjaan penelitian ini, sinyal electrooculogram (EOG) diekstrak dari sinyal electroenchepalogram (EEG) yang didapatkan dari perangkat Neurosky Mindwave. Tahap pertama dalam pengerjaan penelitian ini adalah desain sistem penerima data dari perangkat. Data yang diperoleh akan diekstraksi dengan menggunakan filter bandpass. Filter bandpass cenderung memberikan tren dari sinyal EEG karena cukup baik dalam membersihkan noise. Tren sinyal yang didapatkan diasumsikan sebagai sinyal EOG. Sinyal EOG hasil filterisasi akan diperkecil ukuran panjangnya untuk mempercepat proses klasifikasi dengan menggunakan k-nearest neighbor dan dynamic time warping. Dengan menggunakan data yang diambil dari 3 subjek uji, didapatkan nilai rata-rata akurasi sebesar 96,3%.
Segmentasi Pembuluh Darah Retina Pada Citra Fundus Menggunakan Gradient Based Adaptive Thresholding Dan Region Growing Sutaji, Deni; Fatichah, Chastine; Navastara, Dini Adni
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 2, No 2 (2016): Juli-Desember
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1012.173 KB) | DOI: 10.26594/register.v2i2.553

Abstract

 Segmentasi pembuluh darah pada citra fundus retina menjadi hal yang substansial dalam dunia kedokteran, karena dapat digunakan untuk mendeteksi penyakit, seperti: diabetic retinopathy, hypertension, dan cardiovascular. Dokter membutuhkan waktu sekitar dua jam untuk mendeteksi pembuluh darah retina, sehingga diperlukan metode yang dapat membantu screening agar lebih cepat.Penelitian sebelumnya mampu melakukan segmentasi pembuluh darah yang sensitif terhadap variasi ukuran lebar pembuluh darah namun masih terjadi over-segmentasi pada area patologi. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan metode segmentasi pembuluh darah pada citra fundus retina yang dapat mengurangi over-segmentasi pada area patologi menggunakan Gradient Based Adaptive Thresholding dan Region Growing.Metode yang diusulkan terdiri dari 3 tahap, yaitu segmentasi pembuluh darah utama, deteksi area patologi dan segmentasi pembuluh darah tipis. Tahap segmentasi pembuluh darah utama menggunakan high-pass filtering dan tophat reconstruction pada kanal hijau citra yang sudah diperbaiki kontrasnya sehingga lebih jelas perbedaan antara pembuluh darah dan background. Tahap deteksi area patologi menggunakan metode Gradient Based Adaptive Thresholding. Tahap segmentasi pembuluh darah tipis menggunakan Region Growing berdasarkan informasi label pembuluh darah utama dan label area patologi. Hasil segmentasi pembuluh darah utama dan pembuluh darah tipis kemudian digabungkan sehingga menjadi keluaran sistem berupa citra biner pembuluh darah. Berdasarkan hasil uji coba, metode ini mampu melakukan segmentasi pembuluh darah retina dengan baik pada citra fundus DRIVE, yaitu dengan akurasi rata-rata 95.25% dan nilai Area Under Curve (AUC) pada kurva Relative Operating Characteristic (ROC) sebesar 74.28%.                           Kata Kunci: citra fundus retina, gradient based adaptive thresholding, patologi, pembuluh darah retina, region growing, segmentasi.  Segmentation of blood vessels in the retina fundus image becomes substantial in the medical, because it can be used to detect diseases, such as diabetic retinopathy, hypertension, and cardiovascular. Doctor takes about two hours to detect the blood vessels of the retina, so screening methods are needed to make it faster. The previous methods are able to segment the blood vessels that are sensitive to variations in the size of the width of blood vessels, but there is over-segmentation in the area of pathology. Therefore, this study aims to develop a segmentation method of blood vessels in retinal fundus images which can reduce over-segmentation in the area of pathology using Gradient Based Adaptive Thresholding and Region Growing. The proposed method consists of three stages, namely the segmentation of the main blood vessels, detection area of pathology and segmentation thin blood vessels. Main blood vessels segmentation using high-pass filtering and tophat reconstruction on the green channel which adjusted of contras image that results the clearly between object and background. Detection area of pathology using Gradient Based Adaptive thresholding method. Thin blood vessels segmentation using Region Growing based on the information main blood vessel segmentation and detection of pathology area. Output of the main blood vessel segmentation and thin blood vessels are then combined to reconstruct an image of the blood vessels as output system.This method is able to segment the blood vessels in retinal fundus images DRIVE with an accuracy of 95.25% and the value of Area Under Curve (AUC) in the relative operating characteristic curve (ROC) of 74.28%.Keywords: Blood vessel, fundus retina image, gradient based adaptive thresholding, pathology, region growing, segmentation.
Klasifikasi penyakit noda pada citra daun tebu berdasarkan ciri tekstur dan warna menggunakan segmentation-based gray level co-occurrence matrix dan lab color moments Ratnasari, Evy Kamilah; Ginardi, Raden Venantius Hari; Fatichah, Chastine
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 3, No 1 (2017): Januari-Juni (3/7)
Publisher : Prodi Sistem Informasi - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1296.147 KB) | DOI: 10.26594/register.v3i1.575

Abstract

 Penyakit noda pada daun tanaman tebu menampakkan gejala berupa lesi atau bercak. Lesi tersebut menghambat proses fotosintesis daun dan dapat mengakibatkan menurunnya produksi gula. Oleh karena itu, dalam meningkatkan kualitas produksi gula dibutuhkan diagnosa dini untuk mengambil keputusan penanganan penyakit yang cepat dan tepat, sehingga dapat meminimalisir kerusakan daun yang signifikan akibat penyebaran penyakit tersebut. Sayangnya keterbatasan keberadaan ahli penyakit tanaman tebu yang berpotensi dalam mendiagnosa penyakit noda tidak dapat mengatasi hal tersebut. Penelitian ini mengusulkan diagnosa penyakit noda tanaman tebu menggunakan metode pemrosesan citra berdasarkan fitur tekstur Segmentation-based Gray Level Co-Occurrence Texture (SGLCM) dan LAB color moments. Metode yang diajukan terdiri dari ekstraksi ciri warna pada citra masukan yang akan menghasilkan 12 fitur warna dan ekstraksi ciri tekstur pada citra masukan yang tersegmentasi dan menghasilkan 24 fitur tekstur, kemudian gabungan fitur warna dan tekstur tersebut digunakan sebagai masukan klasifikasi k-Nearest Neighbor (kNN) untuk mengenali jenis penyakit noda pada citra daun tanaman tebu. Jenis penyakit noda terdiri dari noda cincin, noda karat, dan noda kuning yang memiliki karakteristik berbeda. Klasifikasi penyakit noda pada tanaman tebu  menggunakan metode tersebut dapat menghasilkan akurasi tertinggi 93%.   The sugarcane spot disease attack the sugarcane with appear as spots on the leaves, so this spots prevent the vital process of photosynthesis to take place and caused sugar production losses. Early diagnosis of this spot disease can improve the quality of sugar production. The diagnosis result can be used as decision reference to control the disease fast and accurately to minimize attack severe that can caused significant damage. Unfortunately, experts who are able to identify the diseases are often unavailable. This research attempted to identify the three sugarcane spot diseases (ring spot, rust spot, and yellow spot) using Segmentation-based Gray Level Co-Occurrence Texture (SGLCM) and LAB color moments. The SGLCM obtain 24 texture features of segmented image and color moments obtain 12 color features. This method achieved at least 93% accuracy when identifying the diseases using kNN classifier.
Co-Authors Achmad Arwan Adhi Nurilham Aditya Bagusmulya Afrizal Laksita Akbar Agung Prasetya Agus Subhan Akbar, Agus Subhan Agus Zainal Arifin Agus Zainal Arifin Ahmad Hayam Brilian, Ahmad Hayam Ahmad Saikhu Ahmad Syauqi Ahmad Syauqi Aini, Nuru Ainul Mu'alif Akwila Feliciano Akwila Feliciano Amalia Nurani Basyarah Amelia Devi Putri Ariyanto Amirullah Andi Bramantya Andika Pratama Andrea Bemantoro J Anisa Nur Azizah Anna Kholilah Anny Yuniarti Ardian Yusuf Wicaksono Ariana Yunita Arianto Wibowo Arif Sanjani, Lukman Arijal Ibnu Jati Ario Bagus Nugroho Arya Yudhi Wijaya Asmawati, Diah Avin Maulana Ayu Ismi Hanifah Benny Afandi Bilqis Amaliah Budi Pangestu Cahyaningtyas, Zakiya Azizah Daniel Oranova Siahaan Daniel Sugianto Daniel Swanjaya Darlis Heru Murti Darlis Herumurti Davin Masasih Deni Sutaji Desmin Tuwohingide Dhimas Pamungkas Wicaksono Diana Purwitasari Diana Purwitasari Diema Hernyka Satyareni Dimas Ari Setyawan Dimas Renggana, Christiant Dini Adni Navastara, Dini Adni Djoko Purwanto Dwi Kristianto Dwi Taufik Hidayat edy susanto Eha Renwi Astuti Eka Prakarsa Mandyartha Eka Prakarsa Mandyartha Eko Prasetyo Esa Prakasa Evan Tanuwijaya Evelyn Sierra Evy Kamilah Ratnasari Fachrul Pralienka Bani Muhamad Fachrul Pralienka Bani Muhamad Faizin, Muhammad 'Arif Fajar, Aziz Fajrin, Ahmad Miftah Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Fatonah, Nenden Siti FATRA NONGGALA PUTRA Febri Liantoni Febri Liantoni, Febri Fiqey Indriati Eka Sari Furqan Aliyuddien Ginardi, R.V. Hari Ginardi, Raden Venantius Hari Gou Koutaki Hadziq Fabroyir Handayani Tjandrasa Haniefardy, Addien Haq, Dina Zatusiva Hardika Khusnuliawati Hardika Khusnuliawati Hari Ginardi Hendra Mesra hidayat, dwi taufik Hilya Tsaniya Hilya Tsaniya I Ketut Eddy Purnama Ilmi, Akhmad Bakhrul Imam Artha Kusuma Imamah Imamah Irzal Ahmad Sabilla Isye Arieshanti Ivan Agung Pandapotan Jayanti Yusmah Sari Johan Varian Alfa Keiichi Uchimura Kevin Christian Hadinata Kevin Christian Hadinata Kinana Syah Sulanjari Kinana Syah Sulanjari Kusuma, Irnayanti Dwi Kusuma, Selvia Ferdiana Lukman Hakim M Rahmat Widyanto M. Rahmat Widyanto Machfud, M. Mughniy Mambaul Izzi Martini Dwi Endah Susanti Maulani, Irham Maulidiya, Erika Mauridhi Hery Purnomo Moch Zawaruddin Abdullah Mohamad Anwar Syaefudin Muhamad, Fachrul Pralienka Bani Muhammad 'Arif Faizin Muhammad Bahrul Subkhi Muhammad Fikri Sunandar Muhammad Jerino Gorter Muhammad Meftah Mafazy Muhammad Muharrom Al Haromainy Muhtadin Mustika Mentari Mutmainnah Muchtar Nafiiyah, Nur Nanik Suciati Nanik Suciati Narandha Arya Ranggianto Nazarrudin, Ahmad Ricky Nur Hayatin Nur Nafi’iyah Nur Nafi’iyah Nurilham, Adhi Nurina Indah Kemalasari Nursanti Novi Arisa Nursuci Putri Husain Nurwijayanti nuzula, Muhammad Iqbal firdaus Pradany, Latifa Nurrachma Priambodo, Anas Rachmadi Putra, Ramadhan Hardani R Dimas Adityo R. Dimas Adityo R. V. Hari Ginardi R.V Hari Ginardi R.V. Hari Ginardi Rachmad Abdullah Rahayu, Putri Nur Ramadhan Rosihadi Perdana Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Kartika Dewi Rendra Dwi Lingga P. Riduwan, Muhammad Riyanarto Sarno Rizal A Saputra Rizal A Saputra, Rizal A Rizal Setya Perdana Rizka Wakhidatus Sholikah Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Raaiqa Bintana Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Safhira Maharani Safhira Maharani Sahmanbanta Sinulingga Salim Bin Usman Salim Bin Usman Sambodho, Kriyo Santoso, Bagus Jati Sarimuddin, Sarimuddin Septiyan Andika Isanta Sherly Rosa Anggraeni Sherly Rosa Anggraeni Shofiya Syidada Siti Mutrofin Siti Mutrofin Siti Rochimah Stefani Tasya Hallatu Subali, Made Agus Putra Subhan Nooriansyah Subkhi, M. Bahrul Sudianjaya, Nella Rosa Suhariyanto Suhariyanto Surya Sumpeno Syah Dia Putri Mustika Sari Sylvi Novita Dewi Tanzilal Mustaqim Tesa Eranti Putri Thoha Haq Tsaniya, Hilya Tuwohingide, Desmin Umi Laily Yuhana, Umi Laily Umy Rizqi Vit Zuraida Wahyu Saputra, Vriza Welly Setiawan Limantoro Wibowo, Prasetyo Wijoyo, Satrio Hadi Wilda Imama Sabilla Yoga Yustiawan Yosi Kristian Yudhi Purwananto Yuhana, Umi Laili Yuita Arum Sari Yulia Niza Yulia Niza Yunan Helmi Mahendra Yuslena Sari, Yuslena Yuwanda Purnamasari Pasrun Zaenal Arifin, Agus Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas