Budi Prawara
National Research and Innovation Agency

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

SIMONIC: IoT Based Quarantine Monitoring System for Covid-19 Vita Awalia Mardiana; Mochamad Mardi Martadinata; Galih Nugraha Nurkahfi; Arumjeni Mitayani; Dayat Kurniawan; Nasrullah Armi; Budi Prawara; Sudirja Sudirja; Andria Arisal; Rendra Dwi Firmansyah; Andri Fachrur Rozie; Sulaksono Priyo; Sopyan Setiana; Asih Setiarini
Jurnal Elektronika dan Telekomunikasi Vol 21, No 2 (2021)
Publisher : LIPI Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/jet.v21.112-121

Abstract

COVID-19, which has become a global pandemic since March 2020, has tremendously affected human life globally. The negative impact of COVID-19 affects societies in almost all aspects. Implementing quarantine monitoring, also social distancing, and contact tracing are a series of processes that can suppress the new infected COVID-19 cases in various countries. Prior works have proposed different monitoring systems to assist the monitoring of individuals in quarantines, as well as many methods are offered for social distancing and contact tracing. These methods focus on one function to provide a reliable system. In this paper, we propose IoT-based quarantine monitoring by implementing a geofence equipped with social distancing features to offer an integrated system that provides more benefits than one system carrying one particular function. We propose a system consisting of a low cost, low complexity, and reusable wristband design and mobile apps to support the quarantine monitoring system. For the geofencing, we propose a GPS-based geofence system that was developed by taking advantage of the convenience offered by the Traccar application. Meanwhile, we add the notification for social distancing feature with adaptive distance measurement RSSI-based set up in the android application. Based on the experiment we did to validate the system, in terms of wristband-to-smartphone communication, scanning interval in smartphone and advertising interval in wristband is best to set in 7 s for both. For social distancing notification and geofence, we measure the system performance through precision, recall, accuracy, and F-measure.
Design of Flexible 3.2 GHz Rectangular Microstrip Patch Antenna for S-Band Communication Teguh Praludi; Yana Taryana; Ken Paramayudha; Budi Prawara; Yusnita Rahayu; Chaeriah Bin Ali Wael; Yaya Sulaeman; Bagus Edy Sukoco; Ros Sariningrum; Hendrawan Kurniadin; Wahid Nova Nugraha
Jurnal Elektronika dan Telekomunikasi Vol 21, No 2 (2021)
Publisher : LIPI Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/jet.v21.140-145

Abstract

This paper presents the design, simulation, realization and analysis of flexible microstrip patch antenna for S-band applications. The proposed design also adopts the conformal structure by utilizing flexible substrate. Conformal or flexible structure allows the antenna to fit with any specified shape as desired. The antenna patch dimensions is 43 mm × 25 mm without SMA connector. The patch is etched on the flexible dielectric substrate, pyralux FR 9111, with a relative dielectric constant of εr = 3 and the thickness of substrate, h = 0.025 mm. The antenna is designed to resonate at 3.2 GHz. The return loss (RL) of the simulation is -35.80 dB at the center frequency of 3.2 GHz. The fabricated antenna prototype was measured at different bending angles scenarios including 0º, 30º, 60º, and 90º. The measurement of antenna prototype shows that the center frequency is shifted to the higher frequency of 3.29 GHz, compared to the simulation result. Among these scenarios, measurement at bending angle of 90º gives the best performance with RL = - 31.38 dB at 3.29 GHz, the bandwidth is 80 MHz, and the impedance ZA = 48.36 + j2.04 Ω. Despite a slight differences from simulation results, the designed antenna still performs well as expected.
Runner profile optimisation of gravitational vortex water turbine Ridwan Arief Subekti; Sastra Kusuma Wijaya; Arief Sudarmaji; Tinton Dwi Atmaja; Budi Prawara; Anjar Susatyo; Ahmad Fudholi
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp4777-4788

Abstract

This study discusses the numerical optimisation and performance testing of the turbine runner profile for the designed gravitational water vortex turbine. The initial design of the turbine runner is optimised using a surface vorticity algorithm coded in MATLAB to obtain the optimal stagger angle. Design validation is carried out using computational fluid dynamics (CFD) Ansys CFX to determine the performance of the turbine runner with the turbulent shear stress transport model. The CFD analysis shows that by optimising the design, the water turbine efficiency increases by about 2.6%. The prototype of the vortex turbine runner is made using a 3D printing machine with resin material. It is later tested in a laboratory-scale experiment that measures the shaft power, shaft torque and turbine efficiency in correspondence with rotational speeds varying from 150 to 650 rpm. Experiment results validate that the optimised runner has an efficiency of 45.3% or about 14% greater than the initial design runner, which has an efficiency of 39.7%.