Claim Missing Document
Check
Articles

Found 1 Documents
Search

On b-edge consecutive edge labeling of some regular tree Kiki Ariyanti Sugeng; Denny R. Silaban
Indonesian Journal of Combinatorics Vol 4, No 1 (2020)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2020.4.1.7

Abstract

Let G = (V, E) be a finite (non-empty), simple, connected and undirected graph, where V and E are the sets of vertices and edges of G. An edge magic total labeling is a bijection α from V ∪ E to the integers 1, 2, . . . , n + e, with the property that for every xy ∈ E, α(x) + α(y) + α(xy) = k, for some constant k. Such a labeling is called a b-edge consecutive edge magic total if α(E) = {b + 1, b + 2, . . . , b + e}. In this paper, we proved that several classes of regular trees, such as regular caterpillars, regular firecrackers, regular caterpillar-like trees, regular path-like trees, and regular banana trees, have a b-edge consecutive edge magic labeling for some 0 < b < |V |.