Claim Missing Document
Check
Articles

Found 6 Documents
Search

Peran Teknologi Untuk Revitalisasi Bandara Dan Transportasi Udara Malkhamah, Siti; Sartono, Wardhani
SENATIK STT Adisutjipto Vol 5 (2019): Peran Teknologi untuk Revitalisasi Bandara dan Transportasi Udara [ISBN XXX-XXX-XXXXX-
Publisher : Sekolah Tinggi Teknologi Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7249.262 KB) | DOI: 10.28989/senatik.v5i0.397

Abstract

Sebagian Bandara di Indonesia dibangun untuk kepentingan Pertahanan dan Keamanan. Bandara tersebut dibangun dengan sistem pelapisan berorientasi lapis permukaan (bukan lapis pondasi/base). Saat bandara di design, traffic-nya sangat berbeda dengan traffic pada saat digunakan dari  sisi ukuran maupun frekuensi. Sebagian besar bandara di Indonesia dibangun secara bertahap dengab segmentasi perkerasan yang berbeda. Sebagian dibangun diatas tanah lunak, dengan kapasitas daya dukung yang sangat rendah. Sebagai contoh APT Pranoto Samarinda, H. Asam Sampit, Juanda Surabaya, dll. Sebagian dibangun di pegunungan, dengan luas bidang/medan datar (flat) yang sangat terbatas, contoh wilayah pedalaman papua). Bandara di Indensia yang telah dibangun juga dapat mengalamai kerusakan. Secara Umum ada 5 Tipe kerusakan :retak (Cracking), kerusakan pada sambungan (joint seal damage), kerontokan (disintegration), perubahan permukaan konstruksi (distortion), hilangnya kekesatan permukaan konstruksi (loss of skid resistance).  Bandara yang mengalami kerusakan dapat mengganggu operasi penerbangan: delay, cancel, diverted, RTB. Kerusakan yang sering terjadi adalah: delamination, depression, dan pothole. Kerusakan tersebut dapat menimbulkan Foreign Object Damage (FOD) yang sangat membahayakan pesawat karena adanya benda asing yang dapat merusak body dan mesin pesawat. Penyebab kerusakan struktur perkerasan movement area (runway, taxiway dan apron) ada 4 faktor, yaitu : air yang meresap melalui permukaan perkerasan yang retak, misal air hujan. air yang berasal dari bawah perkerasan dan membasahi subgrade maupun subbase, misal air tanah, air yang berasal dari kawasan di sekitar bandara dan dapat menggenangi perkerasan, overload atau beban lebih  pavement bearing capacity atau max allowable gross weight dari perkerasan lebih rendah dari pada bobot pesawat yang dilayani (RTOW atau MTOW).
SISTEM INFORMASI PENGAWASAN KENDARAAN ANGKUTAN BARANG PADA JEMBATAN TIMBANG UNTUK PENENTUAN PELANGGARAN MUATAN LEBIH DAN DAMAGE FACTOR (Studi Kasus Daerah Istimewa Yogyakarta) Simatupang, Rudy Handry Halomoan; Sartono, Wardhani; Christady H, Hary
Civil Engineering Forum Teknik Sipil Vol 18, No 2 (2008): MEI 2008
Publisher : Civil Engineering Forum Teknik Sipil

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1065.645 KB)

Abstract

Government has determined maximum limit of axle pressure for vehicle passing in the road of MST (Heaviest Axle Load) < 8 ton, MST 8 ton and MST 10 ton. But, the problem is that there are many overloaded freight vehicles. The lack of control and law application causes the happening of case like overloaded resulting in faster damage than the planned duration and traffic accident involving freight truck. Daerah Istimewa Yogyakarta is a province connecting East java – Central Java – West Java. It has potential to serve traffic flow, either passenger or freight. Therefore it needs a system to control freight vehicle in measuring bridge. Information System of Freight vehicle control (SIWASAL) used reaction analysis of freight vehicle dimension and the calculation of damage factor. Axle configuration discussed based on field observation and load survey carried out by PUSTRANS JALAN in 2002 in Pantura, comprised of 1.1, 1.2, 1.22, 11.22, 1.2+22 (coupled freight vehicle), 1.22+22 (coupled freight vehicle), 1.2-2 (attached freight vehicle), 1.2-22 (attached freight vehicle), 1.22-22 (attached freight vehicle), 1.22-222 (attached freight vehicle). The result of this system helped the operator of measuring vehicle weight limit’s in applying the law and could be used by the government as the database in controlling, planning, maintaining and developing road pavement and give information, either to the employer of freight vehicle and society. The release of data process will present the number of the vehicle, trade mark/type, the name of the company, origin/destination, type of goods loaded, JBB, JBI, the weight of each vehicle axle, loading capacity, MST and vehicle damage factor. The recapitulation of freight vehicle control comprised of vehicle type, the name of the company, origin, destination, type of goods and axle configuration comprising of damage factor amount presented in the form of graphic periodically.
ANALISIS GEOMETRIK FASILITAS SISI UDARA BANDAR UDARA INTERNASIONAL LOMBOK (BIL) NUSA TENGGARA BARAT Muttaqin, Aulia; Sartono, Wardhani; Christady, Hary
Civil Engineering Forum Teknik Sipil Vol 19, No 1 (2009): JANUARI 2009
Publisher : Civil Engineering Forum Teknik Sipil

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (121.295 KB)

Abstract

The economic growth and local advancement require increasing development of local infrastructure, including the air transportation. Selaparang airport in the Province of West Nusa Tenggara apparently has technical limitations for airside and landside development. Therefore, the local government and PT. Angkasa Pura I have formulated a policy to relocate a new airport with international standard, which is to be known as Lombok International Airport (BIL), to replace the Selaparang airport. Data used for the airport reconstruction analysis consisted of technical facilities required for the airside such as runway, taxiway and apron. The International Coorperation Aviation Organization (ICAO) and Federal Aviation Association (FAA) method were used reffering to Boeing Characteristic Airplane and the apron formulation capacity at peak time based on Japan International Coorperation Agency (JICA). Results of the analysis showed that the the reconstruction Phase I and Phase II of planned Lombok International Airport were classified as 4C and 4E, with 11 and 31 runways, respectively based on the ICAO standard by 2028. These figures were in accordance to the results of windrose analysis on system of up to 95% direction site usability factor. The planned airplanes using the airside facilty on Phase I were B 737-400 and MD 82 and B 747-400 on Phase II. The required length for runway of phase I is 3000 m, 4000 m for phase II, and 45 m runway width using the MTOW value. The taxiway dimension analysis was based on ICAO, FAA and Boeing Characteristic Airplane and resulted in 15 m taxiway for phase I and 23 m phase II. The analysis was divided into three analyses. The required apron dimensions for phase I stage 1 (2006, Phase I stage 2 (2016) and Phase II (2028) are 30.000 m2, 44.000 m2, and 123.520 m2, respectively.
KAJIAN PENGEMBANGAN SISI UDARA BANDAR UDARA JAPURA KABUPATEN INDRAGIRI HULU Hazanawati, Hazanawati; Sartono, Wardhani
Civil Engineering Forum Teknik Sipil Vol 18, No 1 (2008): JANUARI 2008
Publisher : Civil Engineering Forum Teknik Sipil

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (95.282 KB)

Abstract

Today Japura airport is needed for actives again to give a more optimum service now and in the future especially for the great increase of passengers and the airplane traffic also other supporting  factor. Analysis for measure the length of the runway, apron capacity and taxiway dimension that  matches the needs based on the planning airplanes, which are Fokker and B 737-400, it is expected to give the airport operational performance as an effort to anticipate the development in the future. This study use on runway, apron and taxiway is conducted to measure the length of the runway, apron capacity and taxiway dimension that matches the needs based on the planning airplane, which are Fokker and B 737-400. This paper uses ICAO (International Cooperation Aviation Organization) and FAA (Federal Aviation Association) methods and JICA (Japan International Corporation Agency) formula (1991) for calculation of apron peak hour capacity. The analysis result shows that the length of runway that is needed for airplane type Fokker-50 is 1. 253 m and B 737-400 is 2.100 m, while the existing length of runway is 1.300 m. The width of runway according to ICAO and FAA standard is 30 m, the same with the existed landing field (runway). While the width of the taxiway according to ICAO and FAA standard by using planned airplane type Fokker-50 is 16, 62 m and B 737-400 is 15 m, narrower than the existed taxiway that is 23, 0 m. The existed apron dimension airplane is 80 m in length and 60 m in width, dimension apron using the planning airplane type Fokker-50 is 80 m x 52 m and B 737-400 is 173 m x 123 m. for the next 20 years, the pavements layers width, at runway, taxiway and apron, it doesn’t need to increase
EVALUASI TINGKAT KERUSAKAN JALAN DENGAN METHODE PAVEMENT CONDITION INDEX (PCI) UNTUK MENUNJANG PENGAMBILAN KEPUTUSAN (Studi Kasus: Jalan Lingkar SeLatan, Yogyakarta) Suswandi, Agus; Sartono, Wardhani; Christady H, Hary
Civil Engineering Forum Teknik Sipil Vol 18, No 3 (2008): SEPTEMBER 2008
Publisher : Civil Engineering Forum Teknik Sipil

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (525.823 KB)

Abstract

Being functioned as the main transportation line for passengers and cargo, any distress on the pavement of South Ring Road in Yogyakarta requires rehabilitation to prevent severe condition. But before the rehabilitation is carried out, it is required to evaluate the road pavement condition. The objective of this study is to appraise or to value the road pavement condition. This research implementation was visually completed by using Pavement Condition Index Method. It was started by dividing the road into several research units in 100 x 3.5 m by size for each unit sample. Then, each of the research unit was observed and measured to identify the distress type and severity level in order to obtain PCI rating value of the pavement. Result of the study showed that the distress types included the alligator cracking, block cracking, depression, longitudinal and transverse cracking, patching, polished aggregate, shoving, slippage cracking and weathering/graveling. The prevailing ones were block cracking and alligator cracking. The damages occurred only on some parts of the segment. Therefore, it was better to adjust the treatment for such damage for the distress type. Treatment priorities should be given to sample unit 23 B (lane 1) due to its smallest PCI value, which was 22, with VERY POOR condition pavement rating.
Peran Teknologi Untuk Revitalisasi Bandara Dan Transportasi Udara Malkhamah, Siti; Sartono, Wardhani
SENATIK STT Adisutjipto Vol 5 (2019): Peran Teknologi untuk Revitalisasi Bandara dan Transportasi Udara [ISBN 978-602-52742-
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/senatik.v5i0.397

Abstract

Sebagian Bandara di Indonesia dibangun untuk kepentingan Pertahanan dan Keamanan. Bandara tersebut dibangun dengan sistem pelapisan berorientasi lapis permukaan (bukan lapis pondasi/base). Saat bandara di design, traffic-nya sangat berbeda dengan traffic pada saat digunakan dari  sisi ukuran maupun frekuensi. Sebagian besar bandara di Indonesia dibangun secara bertahap dengab segmentasi perkerasan yang berbeda. Sebagian dibangun diatas tanah lunak, dengan kapasitas daya dukung yang sangat rendah. Sebagai contoh APT Pranoto Samarinda, H. Asam Sampit, Juanda Surabaya, dll. Sebagian dibangun di pegunungan, dengan luas bidang/medan datar (flat) yang sangat terbatas, contoh wilayah pedalaman papua). Bandara di Indensia yang telah dibangun juga dapat mengalamai kerusakan. Secara Umum ada 5 Tipe kerusakan :retak (Cracking), kerusakan pada sambungan (joint seal damage), kerontokan (disintegration), perubahan permukaan konstruksi (distortion), hilangnya kekesatan permukaan konstruksi (loss of skid resistance).  Bandara yang mengalami kerusakan dapat mengganggu operasi penerbangan: delay, cancel, diverted, RTB. Kerusakan yang sering terjadi adalah: delamination, depression, dan pothole. Kerusakan tersebut dapat menimbulkan Foreign Object Damage (FOD) yang sangat membahayakan pesawat karena adanya benda asing yang dapat merusak body dan mesin pesawat. Penyebab kerusakan struktur perkerasan movement area (runway, taxiway dan apron) ada 4 faktor, yaitu : air yang meresap melalui permukaan perkerasan yang retak, misal air hujan. air yang berasal dari bawah perkerasan dan membasahi subgrade maupun subbase, misal air tanah, air yang berasal dari kawasan di sekitar bandara dan dapat menggenangi perkerasan, overload atau beban lebih  pavement bearing capacity atau max allowable gross weight dari perkerasan lebih rendah dari pada bobot pesawat yang dilayani (RTOW atau MTOW).