Claim Missing Document
Check
Articles

Found 20 Documents
Search

PENINGKATAN JIWA WIRAUSAHA SANTRI MELALUI PELATIHAN PEMANFAATAN SAMPAH PLASTIK MENJADI PRODUK BERNILAI JUAL Etik Zukhronah; Winita Sulandari; Isnandar Slamet; Sri Subanti; Sugiyanto Sugiyanto; Irwan Susanto
J-ABDI: Jurnal Pengabdian kepada Masyarakat Vol. 2 No. 9: February 2023
Publisher : Bajang Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53625/jabdi.v2i9.4777

Abstract

Lack of public understanding about the proper handling of plastic waste can damage the environment. Based on the results of a survey conducted on students at the Darul Muttaqin Islamic Boarding School, Sragen, it can be seen that the waste management in the boarding school has not been carried out properly. In general, waste is directly disposed of in a landfill, without prior sorting between organic and inorganic waste. In this case, the residents of the cottage have not tried to process waste, especially plastic waste into useful products. For this reason, the service team for the Statistics Study Program FMIPA UNS held a socialization and training on the use of plastic waste into ornamental flower products. The purpose of this activity is to equip students with skills, as well as to foster an entrepreneurial spirit by marketing products from plastic waste to the general public. In the end, the success of product marketing will provide its own advantages as an alternative source of income for the students. In the future, the activities carried out consistently and sustainably will not only provide good benefits for the students but also the preservation of the surrounding environment.
Retinopathy Classification using Convolutional Neural Network Method with Adaptive Momentum Optimization and Applied Batch Normalization Slamet, Isnandar; Susilotomoa, Dhestahendra Citra; Zukhronah, Etik; Subanti, Sri; Susanto, Irwan; Sulandari, Winita; Sugiyanto, Sugiyanto; Susanti, Yuliana
Journal of Applied Data Sciences Vol 5, No 3: SEPTEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i3.309

Abstract

Retinopathy is a common eye disease in Indonesia, ranking fourth after cataracts, glaucoma, and refractive errors. It can be overcome by early diagnosis with optical coherence tomography (OCT), but this imaging technique takes much time. In this research, retinal imaging was carried out using an expert system. The expert system in this study was formed using the convolutional neural network (CNN or ConvNet) method. CNN is an algorithm of deep learning that uses convolution operations to process two-dimensional data, such as images and sounds. This research consisted of 4 stages: data collection, preprocessing, model design, and model testing. A CNN model was formed with three arrangements, consisting of two convolutional layers and one pooling layer. The ReLU activation function, zero padding, and batch normalization were used in all three formats. Then, the flattening process was carried out, and the Softmax activation function was used at the end of the architecture. The model was built using eight epochs, and optimization of Adaptive Momentum resulted in a 98.96% test data accuracy value. The result was considered good so that CNN could be used as an alternative in retinopathy diagnosis. Further research is suggested to use other optimizations or other model architectures.
Implementation of Scale-Invariant Feature Transform Convolutional Neural Network for Detecting Distracted Driver Fhadilla, Nahdatul; Sulandari, Winita; Susanto, Irwan; Slamet, Isnandar; Sugiyanto, Sugiyanto; Subanti, Sri; Zukhronah, Etik; Pardede, Hilman Ferdinandus; Kadar, Jimmy Abdel
Journal of Applied Data Sciences Vol 5, No 3: SEPTEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i3.222

Abstract

A distraction while driving a vehicle may result in fatal consequences, namely accidents that may leave road users seriously injured or even dead. In order to mitigate this risk, it is imperative to establish a distracted driver detection system that is both precise and real-time. This research focuses on the application of artificial intelligence, with a particular emphasis on deep learning, which is achieved through the utilization of the Convolutional Neural Network (CNN) model. In order to enhance the detection of inattentive drivers and produce a more precise model, a scaleinvariant feature transform (SIFT)-CNN combination is proposed. The activities of the driver while operating a vehicle are categorized into ten categories in this study. One of these categories is considered a normal condition, while the remaining nine are classified as inattentive behaviors. This study implemented Adam optimization with 64 batches, a learning rate of 0.001, and epochs of 20, 25, 50, and 100. The proposed CNNSIFT model is capable of achieving superior performance in comparison to the solitary CNN model, as evidenced by the experimental results. The CNN-SIFT model has achieved 99% accuracy and a 0.05 loss when the hyperparameter configuration is optimized for 50 epochs. The analysis indicates that the accuracy of the features obtained from CNN-SIFT can be improved by approximately 1% compared with CNN to classify the type of driver distraction behavior. The model's reliability was further enhanced by its evaluation on test data, which resulted in high accuracy, precision, recall, and F1-score values. The model's ability to accurately identify driver behavior with a high degree of reliability is demonstrated by these results, which are a positive contribution to the improvement of road safety.
Implementasi High Order Intuitionistic Fuzzy Time Series Pada Peramalan Indeks Harga Saham Gabungan Nugraha, Titis Jati; Sulandari, Winita; Slamet, Isnandar; Subanti, Sri; Zukhronah, Etik; Sugianto, Sugianto; Susanto, Irwan
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 2: April 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241127363

Abstract

Indeks Harga Saham Gabungan (IHSG) adalah indeks yang mengukur kinerja harga semua saham yang terdaftar di Bursa Efek Indonesia (BEI) Peramalan IHSG menjadi referensi bagi investor untuk memperoleh keuntungan di pasar modal. Penelitian ini membahas penerapan metode High Order Intuitionistic Fuzzy Time Series (HOIFTS) dalam peramalan IHSG di BEI. Metode HOIFTS melibatkan tiga indikator, yaitu derajat keanggotaan, derajat non- keanggotaan, dan fungsi skor (indeks intutionistic) sehingga model yang dihasilkan mampu menangani ketidakpastian dalam data. Tahapan penting dalam pemodelan HOIFTS adalah pada fuzzifikasi intuitionistic, penentuan relasi logika fuzzy intutionistic, dan proses defuzifikasi order tinggi intuitionistic. Penelitian ini menetapkan metode Chen, baik order satu maupun order tinggi sebagai metode pembanding untuk melihat seberapa jauh keberhasilan metode HOIFTS dalam meramalkan data bulanan IHSG. Hasil perbandingan nilai RMSE (root mean square error) dan MAPE (mean absolute percentage error) yang dihasilkan oleh ketiga model menunjukkan bahwa metode HOIFTS memiliki nilai kesalahan yang paling kecil. Dengan demikian, metode HOIFTS lebih direkomendasikan dalam peramalan IHSG dibandingkan dua metode lain yang dibahas dalam penelitian ini. 
Modeling Human Development Index of East Java Using Spatial Autoregressive and Spatial Error Ensemble Jelita, Nadia Aulia; Handajani, Sri Sulistijowati; Susanto, Irwan
PYTHAGORAS Jurnal Matematika dan Pendidikan Matematika Vol. 19 No. 2: December 2024
Publisher : Department of Mathematics Education, Faculty of Mathematics and Natural Sciences, UNY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/pythagoras.v19i2.78621

Abstract

The human development index (HDI) is an indicator used to monitor the government's success in developing the quality of human life. East Java Province's HDI is the lowest compared to other provinces on Java Island. Therefore, it is necessary to improve human development in this province. Attention must be paid to all aspects of human development, including the relationship between neighboring regions. The spatial regression method is an analysis method that considers the spatial dependency of the data. Ensemble spatial regression combines several spatial models by adding noise to the response variable, which is expected to reduce the diversity in the data. This research aims to use ensemble spatial regression to examine the East Java HDI. East Java HDI has spatial lag and spatial error dependence, modeled with SAR and SEM. Queen contiguity is used as a spatial weight. The SEM model does not fulfill the homogeneity assumption, so it is continued with the ensemble method. The ensemble method is proven to reduce diversity, so  SEM Ensemble fulfills the assumption of homoscedasticity. After analysis using SAR and SEM Ensemble, the SAR model was chosen as the best model with the largest  and lowest AIC value. Significant variables on East Java HDI are life expectancy, expected years of schooling, average years of schooling, and expenditure per capita.
Combined Model of Markov Switching and Asymmetry of Generalized Seasonal Autoregressive Moving Average Conditional Heteroscedasticity for Early Detection of Financial Crisis in Hong Kong Sugiyanto, Sugiyanto; Subanti, Sri; Slamet, Isnandar; Zukhronah, Etik; Susanto, Irwan; Sulandari, Winita; Aprilia, Nabila Churin
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 10, No 2 (2024)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24775401.v10i2.21943

Abstract

The financial crisis in Hong Kong occurred in 1997 and 2008. To prevent a crisis or reduce the impact of a crisis, action is needed through early detection of the crisis using export indicator. The combination of Markov Switching and Asymmetric Generalized Seasonal Autoregressive Moving Average Conditional Heteroscedasticity (MS-AGSARMACH) models explains the crisis well. The results show that the MSAGSARMACH(2,1,1) model can explain past and future crises well.
Forecasting of Indonesian Crude Prices using ARIMA and Hybrid TSR-ARIMA Zukhronah, Etik; Sulandari, Winita; Subanti, Sri; Slamet, Isnandar; Sugiyanto, Sugiyanto; Susanto, Irwan
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 10, No 2 (2024)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24775401.v10i2.21946

Abstract

Forecasting of Indonesian crude prices (ICP) is crucial for the government and policymakers. It helps them develop appropriate economic policies, budget allocations, and energy strategies. Forecasting methods that can be used are Time Series Regression (TSR) and Autoregressive Integrated Moving Average (ARIMA). This study aims to forecast ICP using ARIMA and hybrid TSR-ARIMA models. The data used in this study is the ICP per month, from January 2017 to November 2022. The data is divided into two groups, the data from January 2017 to December 2020 is used as training data, and the data from January 2021 to November 2022 is used as testing data. The MAPE values for the testing data of the TSR-ARIMA(2,1,0) and ARIMA(2,1,0) models are 8.24% and 17.37% respectively. Based on this, it can be concluded that the TSR-ARIMA(2,1,0) model is better than the ARIMA(2,1,0) model for forecasting ICP.
PENINGKATAN LITERASI STATISTIKA : MEWUJUDKAN SANTRI CERDAS SEBAGAI UPAYA OPTIMALISASI ZAKAT DAN PEMBERDAYAAN POTENSI UMMAT Slamet, Isnandar; Zukhronah, Etik; Sulandari, Winita; Subanti, Sri; Sugiyanto, Sugiyanto; Susanto, Irwan; Isnaini, Bayutama; Afanyn Khoirunissa, Husna; Adi Wicaksono, Nanda; Indra Raditya , Dionisius
J-ABDI: Jurnal Pengabdian kepada Masyarakat Vol. 5 No. 3: Agustus 2025
Publisher : Bajang Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pemberdayaan Potensi Ummat”. Tujuan utama kegiatan adalah membekali peserta dengan pengetahuan dasar statistika sebagai alat berpikir rasional dan analitis, serta memperkuat kesadaran akan kewajiban dan keutamaan (fadhilah) zakat dalam kehidupan sosial-keagamaan. Kegiatan diikuti oleh 114 peserta, terdiri dari 102 santri dan 12 ustadz. Materi yang disampaikan meliputi statistika dasar, konsep kewajiban zakat menurut syariat Islam, serta fadhilah zakat dalam rangka pemberdayaan umat. Tim pengabdian berasal dari Grup Riset Statistika dan Sains Data Bidang Industri dan Ekonomi, Universitas Sebelas Maret (UNS). Metode pelaksanaan meliputi pre-test, penyampaian materi secara interaktif, praktik pengolahan data sederhana, diskusi aplikatif, dan post-test. Hasil evaluasi menunjukkan peningkatan signifikan pada pemahaman peserta terhadap materi yang disampaikan. Kegiatan ini diharapkan menjadi langkah awal dalam membentuk generasi santri yang cerdas secara statistik, sadar zakat, dan siap berkontribusi dalam penguatan ekonomi umat berbasis pesantren.
Perbandingan Hasil Peramalan Uang M1 di Indonesia Menggunakan Metode SARIMA dan Metode SVR Zukhronah, Etik; Hidayah, Nurrul; Susanto, Irwan
TIN: Terapan Informatika Nusantara Vol 6 No 2 (2025): July 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/tin.v6i2.7638

Abstract

M1 money is the most liquid form of money supply because all its components (currency and giral) can be directly used for daily transactions and reflect the dynamics of public consumption. M1 money forecasting is necessary to anticipate its fluctuations that can affect price stability and inflation. This study aims to compare the results of M1 money forecasting with the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Support Vector Regression (SVR) methods. The M1 Money data is divided into two, 80% training data from January 2010 to February 2021 and 20% testing data from March 2021 to December 2023. SARIMA and SVR modeling were carried out separately and then the best model was selected based on the smallest Mean Absolute Percentage Error (MAPE). The results of the study found that the best SARIMA model is SARIMA (1,1,0)(1,1,0)₁₂ with a MAPE of 2,250%, while the best SVR model uses a linear kernel with optimal hyperparameters C=100; ε=0,001; and γ=0,001 resulting in a MAPE of 2,254%. Thus, the SARIMA model has a better level of accuracy in predicting M1 money in Indonesia. The application of this model in predicting is expected to help related parties in evaluating the direction of monetary policy and understanding economic conditions.
ANALISIS REGRESI ROBUST ESTIMASI GM PADA INDEKS KEPARAHAN KEMISKINAN PROVINSI-PROVINSI DI INDONESIA Aristiarto, Rio; Susanti, Yuliana; Susanto, Irwan
Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) Vol 7, No 1 (2023): SEMNAS RISTEK 2023
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/semnasristek.v7i1.6273

Abstract

Indeks keparahan kemiskinan merupakan indikator yang dapat digunakan untuk melihat perkembangan kemiskinan. Indeks ini memberikan gambaran mengenai penyebaran pengeluaran di antara penduduk miskin. Kemiskinan di Indonesia selama tiga tahun terakhir terjadi peningkatan. Penelitian ini bertujuan untuk mengetahui faktor-faktor yang mempengaruhi indeks keparahan kemiskinan provinsi-provinsi di Indonesia. Data indeks keparahan kemiskinan tahun 2021 mengandung pencilan di dalamnya sehingga asumsi normalitas tidak terpenuhi. Salah satu metode yang dapat digunakan dalam mengatasi pencilan yaitu analisis regresi robust. Estimasi yang digunakan adalah Generalized M (GM) yang merupakan pengembangan dari estimasi M ketika estimasi M kurang sensitif terhadap pencilan. Hasil penelitian menunjukkan bahwa faktor-faktor yang berpengaruh signifikan terhadap indeks keparahan kemiskinan provinsi-provinsi di Indonesia tahun 2021 adalah persentase penduduk miskin, indeks pembangunan manusia, dan proporsi rumah tangga dengan status rumah milik sendiri.