Djoko Purnomo
Departement of Agrotechnology, Faculty of Agriculture, Sebelas Maret University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Effects of light intensity and co-inoculation of arbuscular mycorrhizal fungi and rhizobium on root growth and nodulation of Indigofera tinctoria Maria Theresia Sri Budiastuti; Djoko Purnomo; Supriyono Supriyono; Bambang Pujiasmanto; Desy Setyaningrum
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 17, No 2 (2020): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v17i2.40065

Abstract

Indigofera tinctoria is a legume that is cultivated as a source of natural indigo dyes. As a legume, Indigofera tinctoria is capable of symbiosis with soil microbes. This study evaluates the effects of light intensity and microbial inoculation on root growth and nodulation. The study used a complete randomized block design with a split-plot pattern. Light intensity was the main plot with four levels of light intensity 100%, 50%, 25%, and 10%. Microbial inoculation was a subplot with four levels without inoculation, mycorrhizae inoculation, rhizobium inoculation, and double inoculation with both mycorrhizae and rhizobium. The results obtained show that light intensity and microbial inoculation affected root length, root fresh weight, root biomass, and the number of nodules. 50% light intensity was optimum for root length, while 100% light intensity was optimum for root fresh weight, root biomass, and a number of nodules. Root growth and nodulation were further increased with double inoculation. The combination of light intensity and microbial inoculation affected root biomass and nodulation. The combination of 100% light intensity and double inoculation resulted in the highest root biomass and nodule numbers. Mycorrhizae and rhizobium have a synergistic relationship to nodulation and root growth. Double inoculation with mycorrhizae and rhizobium efficiently increased root biomass and the number of nodules under low or high light intensity.
A Study of Light Intensity and Fertilizer on Soybean in Albizia chinensis Agroforestry System Zulfikar Affandi; Djoko Purnomo; Supriyono Supriyono
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v16i1.25872

Abstract

One of the efforts to solve the decreasing of agriculture land area caused by land use change is through agroforestry system (AF), such as the cultivation among the Albizia chinensis trees. This research, along with the experiment, aims at studying the light characteristic of 1.5 years oldAlbizia c and the effect of fertilization on the growth of soybean and testing the soybean yield of Dega 1 varieties in agroforestry system based on Albizia c. Using the split-plot Randomized Block Design (RBD) as the experiment, the intensity of light was employed as the main plot whereas the fertilizer was used as the subplot in this study. There were four levels of light intensity:  land with high light intensity (lands outside AF), rather high light intensity (radiation transmission fraction (RTF) among Albizia c 1425 ha-1 density), medium-high light intensity (RTF among 2850 Albizia c density with pruned canopy), rather low light intensity (RTF among 2850 Albizia c  density with unpruned canopy). As the subplot were some various fertilizers such as Albizia c litter, Albizia c litter + phosphorus (P) + potassium (K), and without any fertilization. Totally 12 treatments were obtained and each of those treatments was replicated three times, consequently consisting of 36 experiment units. The result of this research shows that  Albizia c was exceedingly potential for the soybean cultivation with AF system. The passing light under the canopy (RTF) depended on the distance between each tree and could be improved by pruning the canopy. The increasing RTF increased vegetative and generative growth. The highest soybean production (3.3 tons ha-1) could be achieved in 2850 trees ha-1 density with pruned canopy (RTF: 49% equals to 28440 lux) compared with biomass production in open land (3.9 tons ha-1).