Muhammad Nurcholis
Universitas Pembangunan Nasional "Veteran" Yogyakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

KEANEKARAGAMAN TANAMAN BUAH DAN KANDUNGAN MERKURI KAWASAN PENAMBANGAN EMAS RAKYAT DUSUN MESU DESA BOTO JATIROTOWONOGIRI JAWA TENGAH Arum Suproborini; Sunarto Sunarto; Wiryanto Wiryanto; Dwi Fitri Yudiantoro; Muhammad Nurcholis; Dewi Sri Sayudi; Mirzam Abdurrachman
EnviroScienteae Vol 13, No 1 (2017): EnviroScienteae Volume 13 Nomor 1, April 2017
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/es.v13i1.3508

Abstract

The processing of gold by means of amalgamation produces mercury wastes. Mercury wastes can pollute the environment. This study aims to determine the diversity of fruit crops and mercury content in the gold mining area of Dusun Mesu. The research method used is survey method, measurement, field observation, and laboratory analysis. The types of plants found are recorded, the number and the diameter. Samples of roots, stems, and leaves of plants were analyzed mercury contents in the laboratory. Based on the results of the analysis, there were 7 types of fruit plants, as many as 32 individuals with the type of vegetation seedling, stake, poles, and trees. The results of calculation of diversity index (H¹), uniformity index (E), and dominance index (C) at all growth rates show low diversity (H = 0.02222 - 0.86648), low uniformity (E = 0.00403-0) , 27959), low dominance (C = 0,0000162 - 0,08). The content of mercury in the soil ranges from 0.001 to 0.044 mg/m³. The content of mercury in fruit crops ranges from <0.0001 - 0.0168%, and soil pH ranges from 4 to 6.8.
Application of Fracture Barrier Analysis in Well Stimulation Planning for Upper Baturaja Limestone Formation Based on Well Log & Drill Cutting Data from OBF-01 and OBF-04 Wells, Offshore Southeast Sumatra Aris Buntoro; Muhammad Nurcholis; Basuki Rahmad; Allen Haryanto Lukmana; Ristiyan Ragil Putradianto
Journal of Petroleum and Geothermal Technology Vol 1, No 2 (2020): November
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jpgt.v1i2.3686

Abstract

In general, the South Sumatra Regional Stratigraphy of the Baturaja Limestone Formation facies is deposited on the Buildup Carbonate (Reef) and the Limestone Clastic Carbonate of the Baturaja Formation which grows as a buildup reef on the platform in the Basement High (Horst) underneath is the Lemat Formation volcanic deposits. Referring to the facies model in general, the Baturaja Limestone Formation, the depositional environment starts from Shelf Lagoon Open Circulation - Winnowed Edge Sand - Organic Buildup - Fore Slope - Deep Shelf Margin - Open Sea Shelf - Basin, meaning that carbonate is formed starting from pure organic Cabonate Buildup Reef without / a little sludge / mud to the Carbonate Basin where more muddy / mud is present, this condition causes clay minerals to also more and more mix with Terigenous Clastics (Quartz, feldpar). The complexity of the Baturaja Limestone Formation requires fracture barrier analysis associated with well stimulation planning in order to increase oil productivity with the appropriate method.   Fracture barrier fracture analysis is an approach method to determine the depth interval that becomes a barrier in hydraulic fracturing by correlating the results of geomechanical analysis from well log data and mineralogical analysis from drill cuttings data, so that a commonly used well stimulation method can be selected, namely hydraulic fracturing, acidizing, and acid-fracturing.From the ternary diagram plot the XRD (bulk) analysis results show that the distribution of the main minerals (Quartz, Clay, Calcite) is more dominant in the ductile zone, hard to frac category. This shows that all the depth intervals in the OBF-01 and OBF-04 wells are more ductile, and are not recommended for hydraulic fracturing. From the XRD (bulk) analysis, Calcite mineral is more dominant, so for well stimulation work it is recommended to use acidizing or acid-fracturing.