Ganda Marihot Simangunsong
Institut Teknologi Bandung

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : INDONESIAN MINING PROFESSIONALS JOURNAL

Dynamic Analysis of Blasting Effect on Nanjung Tunnel Stability Alio Jasipto; Nuhindro Priagung Widodo; Ganda Marihot Simangunsong; Simon Heru Prasesetyo; Made Astawa Rai; Dhika Noor Pradhana; Dimas Agung Saputra
Indonesian Mining Professionals Journal Vol 2, No 1 (2020): April
Publisher : PERHAPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36986/impj.v2i1.17

Abstract

This study aims to dynamically analyze blasting conducted in the Nanjung tunnel. Nanjung Tunnel is a twin tunnel that has a horseshoe-shaped section with each tunnel having a dimension of 10.2 m x 9.2 m, and 230 meters in length. The layers rock of this tunnel include silty clay, sandstone and dacite. Blasting was carried out on one of the tunnels consisting of dacite rock, having a 75-90% RQD and UCS 49-61 MPa. During the blast, PPV measurements were taken at several points around the tunnel using a minimate.Dynamic analysis is done by building a Nanjung Tunnel model on the RS2 software with the finite element method. Input data in this modeling is endeavored to approach actual conditions in the field, such as tunnel geometry, rock mass properties, and blasting plans carried out at STA 30-32 tunnels 2. This modeling is expected to produce PPV that is close to actual PPV and the results of this model will be continued to the stability analysis tunnel 1.Modeling results indicate that the tunnel 1 condition is stable during blasting. The stability of tunnel 1 based on smallest strength factor on the roof is around 2.6. Stability also seen from the strain level in dacite and sandstone rocks which are 0.07% and 0.38%. These strain levels are still permissible according to the Sakurai strain level diagram, 1983.
Stability Analysis of the Nanjung Water Diversion Twin Tunnels based on Convergence Measurement Simon Heru Prassetyo; Ganda Marihot Simangunsong; Ridho Kresna Wattimena; Made Astawa Rai; Irwandy Arif; Nuhindro Priagung Widodo; Dhika Noor Pradhana; Dimas Agung Saputra
Indonesian Mining Professionals Journal Vol 1, No 1 (2019): NOVEMBER
Publisher : PERHAPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36986/impj.v1i1.11

Abstract

This paper focuses on the stability analysis of the Nanjung Water Diversion Twin Tunnels using convergence measurement. The Nanjung Tunnel is horseshoe-shaped in cross-section, 10.2 m x 9.2 m in dimension, and 230 m in length. The location of the tunnel is in Curug Jompong, Margaasih Subdistrict, Bandung. Convergence monitoring was done for 144 days between February 18 and July 11, 2019. The results of the convergence measurement were recorded and plotted into the curves of convergence vs. day and convergence vs. distance from tunnel face. From these plots, the continuity of the convergence and the convergence rate in the tunnel roof and wall were then analyzed. The convergence rates from each tunnel were also compared to empirical values to determine the level of tunnel stability. In general, the trend of convergence rate shows that the Nanjung Tunnel is stable without any indication of instability. Although there was a spike in the convergence rate at several STA in the measured span, that spike was not replicated by the convergence rate in the other measured spans and it was not continuous. The stability of the Nanjung Tunnel is also confirmed from the critical strain analysis, in which most of the STA measured have strain magnitudes located below the critical strain line and are less than 1%.
Rock strength analysis due to discontinuity and grouting Nur Alam Syah Rahman; Ganda Marihot Simangunsong; Irwandi Arif
Indonesian Mining Professionals Journal Vol 2, No 1 (2020): April
Publisher : PERHAPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36986/impj.v2i1.20

Abstract

Instability on rock, one of many factors caused by joint. Decreased of rock strength occurred inline with existence a number of joints. Poor rock have a large number of joints. Therefore rock reinforcement such as grouting can be one of the solution. This research conducted on artificial sample Moldano Tara (dental stone type III). It had been given artificial joints with orientation 60o from axial and frequency 1 till 2.  Furthermore, grout material with composition 4C;5W had been injected on joint and cured in 28 days. Triaxial test are done in all samples intact, jointed and grouted and its been analyzed with Mohr-Coulomb and Hoek Brown failure criteria. It is found,  joint given negative contribution on shear strength, declining 65,75% and 73,48%, whereas on UCS declined 46,85% dan 56,19%. On the other hand, grouting had been given positive contribution on shear strength, increasing 166,15% and 188,07%, while UCS increased 46,60% and 60,92%