Claim Missing Document
Check
Articles

Found 2 Documents
Search

Konversi Termal kayu ketapang (Terminalia Catappal) Menjadi Bio-Oil Dengan Teknologi Pirolisis Menggunakan Katalis NiMo/NZA Ari Aditia Sukma; Syaiful Bahri; Aman Aman
Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains Vol 1, No 1 (2014): Wisuda Februari Tahun 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Availability of fossil fuels are depleting resulted in higher mining costs and selling prices to the public. In addition, the results of its combustion also releases GHG to the environment. One way to reduce the use of fossil fuels is produce bio-oil through pyrolysis technology. Ketapang rod is a huge potential used as feedstock for bio-oil production because its high cellulose content (41.80%). Synthesis of bio-oil from Ketapang stem begins with the process of size reduction of biomass and natural zeolite to -100+200 mesh size. Then, into the natural zeolite impregnated Ni and Mo to form the bimetallic catalyst NiMo/NZA. The catalyst is then activated through the stages of calcination, oxidation, and reduction. Pyrolysis process is done by varying the weight percentage of catalyst to biomass, ie: 1.5%, 2%, 2.5%, and 3% w/w. In addition, the catalytic pyrolysis process is carried 3% NZA only  and 3% NiMo/NZA were activated by calcination process alone. The highest yield was obtained on the use of catalysts NiMo/NZA perfect activated which amounted to 91.05%. From physics analysis performed on the bio-oil obtained: density of 0.91 g/ml, viscosity 10.839 cSt, acid number 46.954 mg NaOH/g sample, flash point 52oC, and the heating value 42.66 MJ/Kg. The figures are included in the range of physical characteristics of diesel-oil. Five (5) the dominant compound results of chemical analysis by GC-MS of the bio-oil from Ketapang rod by using a catalyst NiMo/NZA 3% by weight are: 3,4,4-trimethyl-2-nonene (10.29%), isobutylene (8.84%), 2,2-dimethyl-butane (8.05%), 3,4,4-trimethyl-2-pentene (5.76%), and 2-methyl-1-heptene (5.26%).  Keywords: Bio-oil, Pyrolysis, and Catalyst NiMo/NZA
Pengaruh Viskositas Oli terhadap Reduksi Amplitudo Getaran pada Sistem Redaman Viskus: Studi Eksperimental Alfi, Rizki; Rudianto; Harif, Muhammad; Sukma, Ari Aditia
Jurnal Teknik Mesin Cakram Vol. 8 No. 2 (2025): Jurnal Teknik Mesin Cakram
Publisher : Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Redaman viskus memiliki peranan penting dalam pengendalian getaran mekanik dengan mengonversi energi osilasi menjadi energi panas melalui fluida pelumas. Penelitian ini menyajikan evaluasi eksperimental pengaruh tingkat viskositas oli terhadap karakteristik peluruhan amplitudo pada sistem massa–pegas–peredam yang berosilasi bebas. Empat oli komersial digunakan sebagai variabel redaman, yakni SAE 20, SAE 40, SAE 60, dan SAE 140. Parameter utama yang diamati meliputi pengurangan logaritmik (δ), rasio redaman (ζ), dan persentase peluruhan amplitudo dalam beberapa siklus osilasi. Hasil memperlihatkan adanya peningkatan yang konsisten pada kemampuan redaman seiring kenaikan viskositas; nilai ζ meningkat dari 0,08 (SAE 20) menjadi 0,18 (SAE 140) dan persentase peluruhan amplitudo dari 8,02% menjadi 17,10%. Temuan ini menegaskan bahwa pemilihan viskositas fluida merupakan parameter desain kunci untuk meningkatkan disipasi energi pada sistem redaman viskus di berbagai aplikasi, termasuk suspensi kendaraan dan peredam industri. Abstract: Viscous damping plays a crucial role in controlling mechanical vibrations by converting oscillatory energy into heat energy through a lubricating fluid. This study presents an experimental evaluation of the effect of oil viscosity on the amplitude decay characteristics of a freely oscillating damper–spring–mass system. Four commercial oils were used as damping variables, namely SAE 20, SAE 40, SAE 60, and SAE 140. The main parameters measured include logarithmic decrement (δ), damping ratio (ζ), and percentage decay amplitude over several oscillation cycles. The results show a consistent increase in damping capability with increasing viscosity; the ζ value increases from 0.08 (SAE 20) to 0.18 (SAE 140), and the percentage decay amplitude from 8.02% to 17.10%. These findings confirm that fluid viscosity selection is a key design parameter for improving energy dissipation in viscous damping systems in various applications, including vehicle suspension components and industrial dampers.