Claim Missing Document
Check
Articles

Found 4 Documents
Search

Persepsi Masyarakat Terkait Program Full Day School terhadap Mutu Pendidikan di Kota Serang Lulu Tunjung Biru; Eha Lestari; Dilla Maharani Putri; Nia Nia; Chandra Eka Nuryanti; Nova Amalia
Gagasan Pendidikan Indonesia Vol 1, No 1 (2020)
Publisher : Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30870/gpi.v1i1.8050

Abstract

Penelitian ini bertujuan untuk menjelaskan Persepsi masyarakat terkait program Full Day School terhadap Mutu Pendidikan di Kota Serang. Penelitian ini menggunakan metode penelitian deskriptif kualitatif, data diperoleh melaluiĀ  kuisioner yang dibuat menggunakan formulir online yang dibagikan melalui link. Subjek dalam penelitian ini adalah masyarakat kota Serang yang berjumlah 30 orang, Hasil Persepsi Masyarakat Terkait Program Full Day School terhadap Mutu Pendidikan di Kota Serang adalah cukup baik
Pengembangan Sistem Informasi Gampong Berbasis Digital di Gampong Lam Bheu Siti Zahara; Marni Safitri; Nova Amalia; Taufik
Jurnal Riset dan Pengabdian Masyarakat Vol. 4 No. 1 (2024): Jurnal Riset dan Pengabdian Masyarakat
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat (LP2M) Universitas Islam Negeri Ar-Raniry Banda Aceh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22373/jrpm.v4i1.3801

Abstract

Digitalisasi desa dalam upaya pembangunan desa yang lebih terarah dan dalam rangka meningkatkan mutu dan kualitas terutama dalam penyelenggaraan pemerintahan desa merupakan program pemerintah pusat dengan slogan "membagun Indonesia dari desa". Salah satunya dalam hal pemberian pelayanan kepada Masyarakat dengan pemanfaatan Digitalisasi seperti Aplikasi Sistem Informasi Gampong (SIGAP), Sistem Informasi Gampong (SID), dan Pejabat Pengelola Informasi dan Dokumentasi (PPID). Metode yang digunakan dalam penelitian ini yaitu metode kualitatif yang dilakukan secara langsung melalui observasi dan wawancara. Hasil penelitian menunjukkan bahwa pengembangan digitalisasi Gampong bertumpu pada dukungan Pemerintah Pusat, sumber daya manusia, Partisipasi Masyarakat, dan Otonomi Gampong menjadi faktor penting agar program tersebut dapat berjalan dengan lancar, efektif dan efisien. Selanjutnya, dari ketiga aplikasi tersebut aplikasi SID lebih unggul dari aplikasi SIGAP, sedangkan aplikasi PPID mempunyai fitur tersendiri.
Implementasi Tata Kelola Teknologi Informasi Menggunakan Framework Cobit 5 Pada Penyelenggaraan Haji dan Umrah Kementerian Agama Kota Lhokseumawe Nova Amalia
Jurnal Elektronika dan Teknologi Informasi Vol 4 No 2 (2023): September 2023
Publisher : LPPM-UNIKI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5201/jet.v4i2.416

Abstract

Hajj and Umrah Organizer, Office of the Ministry of Religion, Lhokseumawe City, as the institution responsible for organizing the Hajj and Umrah, is faced with complex challenges related to information and technology management. This research determines the process domain of Control Objectives using the COBIT 5 Framework and analysis of Capability Levels in Agencies. Based on the results of this research, it was found that the COBIT 5 domain processes used were EDM (Evaluate, Direct and Monitor), APO (Align, Plan and Organize), and MEA (Monitor Evaluate and Assess). The research results show that the agency's capability level is 2.29, which means it is still at level 2 (managed process), meaning the process has been carried out regularly, there is planning and supervision. Therefore, recommendations are needed for target levels to be achieved at level 3 by improving documentation of information technology management processes and developing requirements, classifications and priorities in providing services and handling incidents.
Application of the Random Forest Algorithm for Predicting Hajj Registration Numbers at Kemenag Lhokseumawe Nova Amalia
Jurnal Elektronika dan Teknologi Informasi Vol 5 No 2 (2024): September 2024
Publisher : LPPM-UNIKI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5201/jet.v5i2.487

Abstract

Ransomware is a type of malware that blocks access to computer systems or data until a ransom is paid by the victim. Ransomware attacks typically occur due to malicious files that are unknowingly downloaded and installed by the victim onto their computer system. Given the threats and potential losses posed, methods for detecting and classifying ransomware continue to be developed, one of which utilizes the Random Forest machine learning algorithm. Random Forest is chosen for its advantages in handling large datasets, short training time, high prediction accuracy, and its ability to reduce the risk of overfitting. Using 1380 ransomware samples from a dataset with 54 features, 10 best features were selected through Feature Selection where the built Random Forest model successfully predicted ransomware files with an accuracy of 98.79%.