Claim Missing Document
Check
Articles

Found 4 Documents
Search

STUDY ON ASHES OF BLENDED COAL-BIOMASS FOR CO-FIRING SYSTEM IN A COAL FIRED BOILER Ikin Sodikin; Datin Fatia Umar
Indonesian Mining Journal Vol 16, No 1 (2013): INDONESIAN MINING JOURNAL Vol. 16 No. 1 February 2013
Publisher : Puslitbang tekMIRA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1312.949 KB) | DOI: 10.30556/imj.Vol16.No1.2013.438

Abstract

Biomass and coal blend combustion or co-firing is a promising combustion technology. However, significant development work is required before large-scale implementation can be realized. Issues related to successful implementation of coal biomass co-firing mainly for power generation should be identified. This paper presents the results of the study on blended coal-biomass characterisation, particularly the ash chemical composition and ash fusion temperature to predict the slagging and fouling propensity in a coal fired boiler. The coal used in this research has a calorific value of 5,067 cal/g and the ash fusion temperature of softening temperature in oxidation condition (softening temperature-ox) is 1,228ºC, while the biomass used was baggase, straw and rice husk with the calorific value of 4,144; 3,545; 3,301 cal/g and the softening temperature-ox of 1,303; 1,420 and >1,500ºC, respectively. Experimental results for some varieties of fuel blends indicate that the proportion of 95%-5% of coal and baggase has the highest softening temperature-ox of 1,225ºC. The blend of coal and straw resulted in the highest softening temperature-ox of 1,240ºC at 95%-5%, while the blend of coal and rice husk, the highest softening temperature-ox of 1,235ºC was reached at the proportion of coal and rice husk at 90%-10%. According to the slagging and fouling index, blended coal and straw shows the best performance compared to that of blended coal either with baggase or rice husk
INDONESIAN LOW RANK COAL RESOURCES TO WHICH UBC TECHNOLOGY IS COMMERCIALLY APPLICABLE BUKIN DAULAY; BINARKO SANTOSO; IKIN SODIKIN
Indonesian Mining Journal Vol 10, No 2 (2007): INDONESIAN MINING JOURNAL Vol. 10 No. 2 June 2007
Publisher : Puslitbang tekMIRA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (425.42 KB) | DOI: 10.30556/imj.Vol10.No2.2007.619

Abstract

Low rank coal (LRC) that constitutes more than 65% of the national coal resources has to be utilized optimally in order to achieve the security of domestic energy supply and an optimum mix of primary energy consumption by the year 2025. The LRC can be upgraded to higher rank coal, both for export and domestic use, particularly for existing industries. Upgraded Brown Coal (UBC) process is one of the best upgrading technologies that can be implemented. Moreover, the low cost production of LRC and the availability of infrastructures would be the more attractive for UBC commercialization. Based on the coal quality specification recommended in this paper, the total moisture of the LRC varies from25.33 to 57.89% (typical 35 - 40%, as received/ar) and its calorific value ranges from 2,504 to 4,900 kcal/kg (typical 3,000 - 4,000 kcal/kg, ar). The ash content of the recommended LRC is less than 10% (typical <5%, dry basis/db) and the sulphur content is typical <0.5% (db). The LRC located in East and South Kalimantan is more attractive for UBC commercialization compared to LRC located in South Sumatera. Most of the LRC in South Sumatera is located far inland that makes the transporta- tion cost for UBC equipment and product become expensive.
STUDY ON ASHES OF BLENDED COAL-BIOMASS FOR CO-FIRING SYSTEM IN A COAL FIRED BOILER Ikin Sodikin; Datin Fatia Umar
Indonesian Mining Journal Vol 16 No 1 (2013): INDONESIAN MINING JOURNAL Vol. 16 No. 1 February 2013
Publisher : Balai Besar Pengujian Mineral dan Batubara tekMIRA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30556/imj.Vol16.No1.2013.438

Abstract

Biomass and coal blend combustion or co-firing is a promising combustion technology. However, significant development work is required before large-scale implementation can be realized. Issues related to successful implementation of coal biomass co-firing mainly for power generation should be identified. This paper presents the results of the study on blended coal-biomass characterisation, particularly the ash chemical composition and ash fusion temperature to predict the slagging and fouling propensity in a coal fired boiler. The coal used in this research has a calorific value of 5,067 cal/g and the ash fusion temperature of softening temperature in oxidation condition (softening temperature-ox) is 1,228ºC, while the biomass used was baggase, straw and rice husk with the calorific value of 4,144; 3,545; 3,301 cal/g and the softening temperature-ox of 1,303; 1,420 and >1,500ºC, respectively. Experimental results for some varieties of fuel blends indicate that the proportion of 95%-5% of coal and baggase has the highest softening temperature-ox of 1,225ºC. The blend of coal and straw resulted in the highest softening temperature-ox of 1,240ºC at 95%-5%, while the blend of coal and rice husk, the highest softening temperature-ox of 1,235ºC was reached at the proportion of coal and rice husk at 90%-10%. According to the slagging and fouling index, blended coal and straw shows the best performance compared to that of blended coal either with baggase or rice husk
INDONESIAN LOW RANK COAL RESOURCES TO WHICH UBC TECHNOLOGY IS COMMERCIALLY APPLICABLE BUKIN DAULAY; BINARKO SANTOSO; IKIN SODIKIN
Indonesian Mining Journal Vol 10 No 2 (2007): INDONESIAN MINING JOURNAL Vol. 10 No. 2 June 2007
Publisher : Balai Besar Pengujian Mineral dan Batubara tekMIRA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30556/imj.Vol10.No2.2007.619

Abstract

Low rank coal (LRC) that constitutes more than 65% of the national coal resources has to be utilized optimally in order to achieve the security of domestic energy supply and an optimum mix of primary energy consumption by the year 2025. The LRC can be upgraded to higher rank coal, both for export and domestic use, particularly for existing industries. Upgraded Brown Coal (UBC) process is one of the best upgrading technologies that can be implemented. Moreover, the low cost production of LRC and the availability of infrastructures would be the more attractive for UBC commercialization. Based on the coal quality specification recommended in this paper, the total moisture of the LRC varies from25.33 to 57.89% (typical 35 - 40%, as received/ar) and its calorific value ranges from 2,504 to 4,900 kcal/kg (typical 3,000 - 4,000 kcal/kg, ar). The ash content of the recommended LRC is less than 10% (typical <5%, dry basis/db) and the sulphur content is typical <0.5% (db). The LRC located in East and South Kalimantan is more attractive for UBC commercialization compared to LRC located in South Sumatera. Most of the LRC in South Sumatera is located far inland that makes the transporta- tion cost for UBC equipment and product become expensive.