Jumina Jumina
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Phosphonate Modified Silica for Adsorption of Co(II), Ni(II), Cu(II), and Zn(II) Dian Maruto Widjonarko; Jumina Jumina; Indriana Kartini; Nuryono Nuryono
Indonesian Journal of Chemistry Vol 14, No 2 (2014)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (362.075 KB) | DOI: 10.22146/ijc.21251

Abstract

A new phosphonate modified silica (PMS) has been investigated for adsorption of Co(II), Ni(II), Cu(II), and Zn(II) in aqueous solution. The adsorbent was modified of silica by immobilizing aminoethyl dihydrogen phosphate (AEPH2) on 1,4-dibromobutane grafted silica. The physicochemical of the adsorbent was investigated using Fourier Transform Infra-red (FTIR) spectroscopy, X-ray Fluorescence (XRF), and N2 gas adsorption/desorption. The adsorption study was carried out in a batch system by mixing solution of metal ions at various pHs, contact times, and initial metal ion concentrations. The unadsorbed metals were determined by Flame Atomic Absorption Spectrophotometry (FAAS). Result of characterization showed that PMS has been successfully prepared. The product contained 45.99% (w/w) silica and 1.33% (w/w) phosphorous with surface area, pore volume, and pore size of 115.3 m2g-1; 0.7578 mLg-1; and 131.44 Å, respectively. Adsorption of metal ions on PMS occurred quite fast, less than 30 min. Modification of phosphonate on silica increased the adsorption capability, up to 8 times higher than that of unmodified silica, depending on metal ion type and pH solution. The capacity order of the metals adsorption was Cu(II)>Co(II)>Ni(II)>Zn(II). Based on the adsorption characteristic, the adsorbent is promising to be applied as a material for solid phase extraction of transition metal ions.
Synthesis of Benzoyl C-Phenylcalix[4]resorcinaryl Octaacetate and Cinnamoyl C-Phenylcalix[4]arene for UV Absorbers Budiana I Gusti M. Ngurah; Jumina Jumina; Chairil Anwar; Mustofa Mustofa; Sahadewa Sahadewa
Indonesian Journal of Chemistry Vol 14, No 2 (2014)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (826.391 KB) | DOI: 10.22146/ijc.21253

Abstract

A new upper rim-functionalized benzoyl C-phenylcalix[4]resorcinaryl octaacetate and cinnamoyl C-phenylcalix[4]resorcinarene have been synthesized and evaluated as the absorbers for ultraviolet radiation. The benzoyl C-phenylcalix[4]resorcinaryl octaacetate was synthesized in 3 steps. They were synthesis of C-phenilcalix[4]resorcinarene via acid-catalyzed-condensation of resorcinol and benzaldehyde, followed by O-acetylation and Friedel-Craft benzoylation. The cinnamoyl C-phenylcalix[4]resorcinarene was synthesized in 4 steps. They were synthesis of C-phenilcalix[4]resorcinarene via acid-catalyzed-condensation of resorcinol and benzaldehyde, followed by O-acetylation, Friedel-Craft cinnamoylation and hydrolysis. Spectroscopic analysis (UV) showed that the target molecule absorbed the ultraviolet radiation between 200 and 400 nm with the maximum absorption at 240.50 nm (ε = 10.135 M-1 cm-1) and 243.50 nm (ε = 12.135 M-1 cm-1).