Claim Missing Document
Check
Articles

Found 5 Documents
Search

English Competence and Self-Efficacy of Hotel Front-Liners: A Snapshot of Hotel Industry during Pandemic Outbreak Yerly A. Datu; Iwan Chandra; Carol Linggo Satrio; Isnaini Faridatul Khasanah; Siti Halima
Budapest International Research and Critics Institute-Journal (BIRCI-Journal) Vol 5, No 2 (2022): Budapest International Research and Critics Institute May
Publisher : Budapest International Research and Critics University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33258/birci.v5i2.5006

Abstract

This study aimed at describing the English competence and self-efficacy of hotel front-liners by employing descriptive qualitative research with a case-study as its approach. 14 participants were involved. 50-item test, 10-item self-efficacy questionnaire and 15-item additional questionnaire served as source of information were analyzed on the basis of each category made. Results showed some categories of score range found: ≥80, 70-79, 60-69, 50-59, 50≤. Those with a score range of ≥80 received the highest percentage: 46.2%. Meanwhile, there were at least 23.1% of the participants with a score range of 70-79. A score range of 60-69 received 15.4% of the participants. In the meantime, 7.7% of the participants were in a score range of 50-59. Lastly, it was also found 7.7% of the participants were in a score range of 50≤. For self-efficacy, 4 specific situations were recorded with high percentages. The first was they felt certain to handle their nervousness when facing foreign guests with 69.2%. Secondly, the participants, 69.2%, felt doubtful when applying good organization of ideas. Thirdly, feeling doubtful, 61.5% took place when facing difficult or tough topics with customers. Lastly, 61.5% of the participants experienced the same feeling of doubts as they applied good grammar in their speaking.
Aplikasi Music Streaming Menggunakan Flutter dilengkapi Music Recognizer Eka Setyaningsih; Iwan Chandra; William William
Jurnal Inovasi Teknologi dan Edukasi Teknik Vol. 1 No. 9 (2021)
Publisher : Universitas Ngeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (347.095 KB)

Abstract

Considering the current development of music streaming services, not many are equipped with a search facility using the music recognizer. Even though there are not a few service users who search for songs only based on the song snippet or the humming tone of the song in question, without knowing the title or artist of the song. Based on this, in this study, a mobile music streaming application was created equipped with a music recognizer using audio fingerprinting that utilizes spectrogram imagery and hash data from audio. The testing process was carried out in 3 scenarios: the first scenario was a recognized test in a quiet environment, and out of 90 trials the results obtained an accuracy of 96.6 percent. The second scenario is to recognize the song in a noisy environment, from 90 trials, the accuracy is 93.3 percent. The third scenario is to recognize the song by humming or humming, from 90 trials, the accuracy is 55.5 percent. All of these trials were carried out by 10 participants with a composition of 5 males and 5 females. Each participant will test the application made with 3 scenarios. Each scenario will be tested for 3 songs with different genres. Menilik perkembangan layanan music streaming saat ini, belum banyak yang dilengkapi dengan fasilitas pencarian dengan memanfaatkan music recognizer. Padahal tidak sedikit pengguna layanan yang melakukan pencarian lagu hanya berdasarkan potongan lagu atau humming nada dari lagu yang bersangkutan, tanpa mengetahui judul atau penyanyi lagu tersebut. Berdasarkan hal tersebut, maka pada penelitian ini dibuatlah sebuah aplikasi mobile music streaming yang dilengkapi dengan music recognizer dengan audio fingerprinting yang memanfaatkan citra spectrogram dan data hash dari sebuah audio. Untuk proses ujicobanya dilakukan dalam 3 skenario: skenario pertama dilakukan uji coba recognize pada lingkungan yang hening, dari 90 kali uji coba mendapatkan hasil akurasi 96,6 persen. Skenario kedua yaitu dengan melakukan recognize pada lagu di lingkungan yang bising, dari 90 kali uji coba mendapatkan hasil akurasi 93,3 persen. Skenario ketiga yaitu dengan melakukan recognize pada lagu dengan humming atau bersenandung, dari 90 kali uji coba mendapatkan hasil akurasi 55,5 persen. Semua uji coba ini dilakukan oleh 10 peserta dengan komposisi 5 laki-laki dan 5 perempuan. Setiap peserta akan menguji aplikasi yang dibuat dengan 3 skenario. Pada setiap skenarionya akan diujikan 3 lagu dengan genre yang berbeda-beda.
Aplikasi Web Pencarian Barang Hilang dengan Deteksi Lokasi Berbasis Google Map API Chandra, Iwan; Irawati, Esther; Archie Kosasih, Richard
Prosiding TAU SNARS-TEK Seminar Nasional Rekayasa dan Teknologi Vol. 2 No. 1 (2023): Prosiding TAU SNARS-TEK Seminar Nasional Rekayasa dan Teknologi 2023
Publisher : Fakultas Teknik dan Teknologi - TANRI ABENG UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47970/snarstek.v2i1.604

Abstract

Technological developments have developed rapidly, where people can share information quickly and efficiently. This research made some observations about utilizing website system technology to search for lost items that inform the point of finding the location of the goods, so that the finder of the goods can inform their discovery through the website. The website system supports the google maps API, claims of goods, and information about information on finding goods. This application development uses React.js javascript to build a more sophisticated and easy-to-use interface for application users.
Hybrid Graph Attention Networks for Influencer Ranking in Student Activity Networks Setiawan, Mikhael; Santoso, Ong Hansel; Chandra, Iwan
International Journal of Engineering, Science and Information Technology Vol 5, No 4 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i4.1474

Abstract

Detecting influencers in a social network of massive student activities is vital for universities because it will help them understand potential leaders and social behavior. This paper mitigates the issues of classical topology-based metrics by presenting volume calculation through Graph Attention Networks (GATs) applied to a real network with 2,520 students and about 282,000 interactions. A new hybrid method of influencer ranking proposed, which combines the node embeddings obtained by GAT with a structural influence signal from PageRank. The evaluation system includes two main parts. First, qualitative evaluation of the hybrid ranking method against PageRank-only. This assessment learns from a ground truth dataset of 993 formal leaders. Second, evaluate the communities found by GNNs against those discovered by classical methods using internal quality criteria, including modularity and conductance. From the observation, PageRank baseline does slightly better than the hybrid method in ranking and both methods are significantly better from a random rank with their Spearman’s Rank Correlation equal to 0.513 for PageRank based and 0.451 of the hybrid variant, respectively. Yet, in the task of community detection, GNNs have greater representational capacity. Even though the resulting modularity score was also very competitive, communities had much lower (and hence better) average conductance than Louvain and Walktrap methods (0.137 vs 0.198 and 0.302). These paired results shows that: the success of a PageRank baseline is tied to our formal-role-based ground truth which is structural. The GNN’s increased ability to discriminate such well-delineated, socially close communities implies that the embeddings it learns better represent the network’s true social structure. In conclusion, while PageRank effectively reveals the formal leaders in a community, our hybrid GAT technique acts as complement to shed light on emerging influencers.
Penentuan Lokasi Wireless Device Berbasis 3d Access Point Location Based Chandra, Iwan
Intelligent System and Computation Vol 4 No 1 (2022): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v4i1.215

Abstract

Perkembangan penggunaan wireless saat ini telah mengubah cara hidup manusia. Dengan menganalisa gelombang yang diterima dari pemancar menuju sebuah perangkat tersebut. Untuk itu dibutuhkan sebuah model yang mampu memprediksi lokasi dari sebuah perangkat penerima. Pada penelitian ini, dikembangkan suatu metode untuk penentuan lokasi terhadap sebuah perangkat di dalam ruangan. Penelitian ini menerapkan konsep neural network dengan mendeteksi sinyal wireless yang ada di sekitar perangkat penerima. Sinyal-sinyal tersebut kemudian dikirimkan menuju server untuk kemudian diproses lebih lanjut. Proses terbagi menjadi dua, yaitu learning dan production. Pada tahap learning, sistem akan membentuk sebuah model yang akan mampu beradaptasi dengan kombinasi input dan output yang telah diberikan sebelumnya. Dengan memanfaatkan konsep Parallel Resilient Back Propagation, hasil akurasi yang diberikan pada penelitian ini mencapai 89%.