Claim Missing Document
Check
Articles

Found 2 Documents
Search

PEMBANGKITAN TEGANGAN MENGGUNAKAN KARBON AKTIF TEMPURUNG KELAPA DENGAN ELEKTROLIT AIR Tista, Si Putu Gede Gunawan; Santhiarsa, I Gusti Ngurah Nitya; Astawa, Ketut; Tenaya, I Gusti Ngurah Putu; Negara, Komang Metty Trisna
Jurnal Rekayasa Mesin Vol. 15 No. 2 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i2.1520

Abstract

The generation of electrical energy from fossil fuels is currently running low, besides that it can cause global warming due to gas emissions such as carbon dioxide. Besides that, the development of small portable equipment such as watches, handphones, and cameras, requires batteries with small power. Therefore, environmentally friendly materials on a small scale are needed to generate electricity, one of which is coconut shell-activated carbon. The purpose of this research is to generate a voltage from a model using activated coconut shell carbon with a water-electrolyte. The model consists of a counter electrode-electrode counter. The counter electrodes are varied, namely aluminum, zinc, and copper. The electrode used is coconut shell-activated carbon, while the electrolyte is distilled water. The electrolyte is injected into the model between the electrode and the counter electrode and then given the heat. When the electrolyte is injected into the model, electrostatic forces occur between the functional groups, the pores on the surface of the activated carbon, the counter electrode, and the water-electrolyte, resulting in the release of electrons. The results show that the voltage generated by heating to a temperature rise of ΔT = 54 ͦC is 0.795 volts for aluminum counter electrodes, while zinc reaches 0.597 volts and copper reaches 0.034 volts. While the average thermal sensitivity of the resulting voltage (dV/dT) for aluminum is 47.85707 mV/ ͦ C, while zinc is 39.15949 mV/ ͦC, and copper is 1.72348 mV/ ͦC.
Impact of Natural Polymer Proportions on the Fire-Retardant Properties of Bioplastics Santhiarsa, I Gusti Ngurah Nitya; Dwidiani, Ni Made; Tenaya, I Gusti Ngurah Putu; Negara, I Gede Artha
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 8, No 2 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v8i22024p434

Abstract

This research investigates the influence of varying proportions of natural polymers on the fire-retardant properties of bioplastic. Tapioca starch (Manihot esculenta) and corn starch (Zea mays) were selected as the bioplastic materials, with different weight fractions employed in the analysis. These materials, as naturally occurring polymers, are biodegradable and serve as promising components in the development of bioplastics. Fire resistance testing was conducted in accordance with ASTM D635-03, utilizing weight ratios of tapioca to corn starch at 70:30, 60:40, and 50:50. The results included photographic documentation of each specimen alongside the corresponding outcomes from the fire resistance tests. These images provide insight into the physical condition of the specimens prior to testing, emphasizing any notable morphological features that may affect their fire resistance properties. The optimal burning rate was observed in the bioplastic with a 50:50 weight fraction ratio of tapioca starch to corn starch, which exhibited a combustion rate of 8.420 mm/s. Additionally, the bioplastic with the highest weight loss rate, recorded at 0.0346 g/s, was also composed of a 50:50 weight fraction of the two starches. The observed increase was 2.36% relative to the 60:40 weight fraction and 13% relative to the 70:30 weight fraction. This increased weight loss rate can be attributed to the higher corn starch content, which is characterized by inherent flammability due to its structural composition.