Claim Missing Document
Check
Articles

Found 2 Documents
Search

Modal Analysis Of Blended Wing-Body UAV Neno Ruseno
Jurnal Teknologi Kedirgantaraan Vol 6 No 2 (2021): Jurnal Teknologi Kedirgantaraan
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1569.51 KB) | DOI: 10.35894/jtk.v6i2.39

Abstract

The modal analysis deals with the dynamic behavior of mechanical structures under the dynamic vibration. This study aims to analyze the vibration characteristic of the blended wing-body Unmanned Aerial Vehicle (UAV) using modal analysis. The numerical method is used to calculate the eigen frequencies of the system. The COMSOL Multiphysics is selected as the Finite Element Method (FEM) software to simulate the study. The resulted eigen frequencies are 278.05 Hz, 721.28 Hz, 816.39 Hz, 1601.7 Hz, 1699.5 Hz, and 1855.5 Hz. The study also evaluates the displacement of the leading edge of the wing in all axes to understand the modal shapes. The modal shapes found are updrift, swift back, flapping vertical, flapping horizontal, flapping opposite horizontal and flapping more wave in horizontal movement. The comparison of resulted eigen frequencies with a conventional aircraft wing is conducted to understand the difference in its vibration characteristics.
DEVELOPMENT OF RETURN TO BASE FLIGHT TRAJECTORY GENERATOR BASED ON DUBINS PATH – VECTOR FIELD METHOD Neno Ruseno; Muhammad Royyan; Prianggada I. Tanaya
Jurnal Teknologi Kedirgantaraan Vol 5 No 1 (2020): Jurnal Teknologi Kedirgantaraan
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jtk.v5i1.278

Abstract

In a Return to Base (RTB) situation, aircraft needs to immediately fly back to its origin airport. Since there is no published flight procedure for an RTB, an Air Traffic Controller (ATC) will assist the pilot for the flight procedure to fly. The objective of this work is to generate a flight trajectory in RTB situation based on the available airport flight procedures (departure and arrival) in Kertajati airport. The Dubins Path was used as a method to generate the flight trajectory and supported by the Vector-Field Methodology. The Python programming simulation was used to simulate the flight trajectory generation in the normal condition, second closest waypoint condition, and different parameters value condition. The trajectory was simulated based on flight characteristic of a single engine aircraft (Cesna 172) and multi-engine aircrafts (Boeing 737-800NG). The simulation results show that the Dubins Path and Vector-Field methodology success to generate the flight trajectory in different types of condition and parameters. The increase in aircraft velocity and the decrease in aircraft bank angle caused an increase in the aircraft turning radius. While, the decrease in aircraft flight path angle caused increase in the length of Dubins Path line.