Pandji Triadyaksa
Department Of Physics, Faculty Of Science And Mathematics, Diponegoro University, Semarang

Published : 13 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Physics and Its Applications

Comparison of I-V Curves Between the Experiment of Corona Discharge on Gradient Line-To-Plane (GL-P) Configuration and The Mathematical Approach Susilo Hadi; Asep Yoyo Wardaya; Zaenul Muhlisin; Jatmiko Endro Suseno; Pandji Triadyaksa; Ali Khumaeni; Muhammad Nur
Journal of Physics and Its Applications Vol 3, No 2 (2021): May 2021
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v3i2.10491

Abstract

Research has been conducted on the comparison of the I-V characteristic curve between mathematical study and experiment of the generation of negative DC corona discharge in the Gradient Line-to-Plane (GL-P) electrode configuration. The reason for this research is to calculate the suitability of the corona discharge electrical current between the mathematical and experimental study. The active electrode used has length 2 cm and height 4 cm. This research is conducted with variations in the sharpness angle of the active electrode (θ) 300, 450, and 600 and variations in the distance between the electrodes () 2 cm, 3 cm, and 4 cm. The mathematical formulation of the value of the corona discharge electrical current in the configuration of the GL-P electrode is obtained by using the geometric concept approach, which is the formulation of the capacitance value of the ordinary electrical circuit, with the addition of the multiplication factor value k in the sharp area of the active electrode, because in that area the greatest plasma flow distance is obtained. The value of the multiplication factor  is obtained by fitting the curve between mathematical study and experiments. The I-V curve between the mathematical study and the corona discharge generation experiment has a high degree of similarity with the smallest percentage contacting point of 37.50%.The value of the multiplication factor  is influenced by the sharpness angle of the active electrode shape and the distance between the electrodes.
Improving water absorption time and the natural silk strength (Bombyx Mori) using atmospheric dielectric barrier discharge plasma Zaenul Muhlisin; Muhammad Adrian Lathif; Fajar Arianto; Pandji Triadyaksa
Journal of Physics and Its Applications Vol 3, No 2 (2021): May 2021
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v3i2.10658

Abstract

This researchaimed to obtain Dielectric Barrier Discharge plasma discharge characteristics with and without the placement of natural silkBombyx Mori on one of the electrodes. Furthermore, the strength and the water absorption time of the irradiated silk samples will be analyzed.  Plasma discharge is generated by connecting electrodes of point-to-plane configuration with a sheet of glass inserted on the plane electrode at atmospheric conditions. The characterization of plasma discharge, either with or without the natural silk samples' placement on the plane electrode, was performed by increasing A.C.'s high voltage power source to reach arch discharge. Theelectrode spacing varied from 0.7 cm to 2.5 cm with a 0.3 cm increment. Sample irradiation was performed using cold plasma for 5, 15, and 30 minutes respectively. Placing or not placing the natural silk samples on the plane electrode will increase the plasma's discharge current and increase the high voltage. Moreover, increasing the distance between the electrodes and placing the sample on the plane electrode decreases the discharge current. Using Scanning Electron Microscopy, it was found that increasing plasma irradiation time on samples decreases the silk thread'sdiameterand shortening its water absorption time. The strength of irradiated fabric was reduceduntil 15 minutes of irradiation. However, at 30 minutes of irradiation, there was an increase in sample thickness compared to control samples.
Dose Distribution of Pencil Beam Proton Therapy using Geant4 Simulation for Breast Cancer Treatment Budiman, Rizki; Sutanto, Heri; Tursinah, Rasito; Triadyaksa, Pandji
Journal of Physics and Its Applications Vol 7, No 2 (2025): May 2025
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v7i2.25067

Abstract

This study aims to obtain a Spread-Out Bragg Peak (SOBP) for breast cancer treatment using proton pencil beams Monte Carlo simulation. Proton beams with 2 MeV energy steps from 70 to 110 MeV were simulated using Geant 4 software to generate the SOBP. The optimization tool Linear Least Squares (lsqlin) was used to configure the proper proton beam weighting fraction. This tool successfully produced SOBPs within a depth range of 4-8 cm, 4-6 cm, and 5-7 cm. Comparison against a trial-and-error approach to creating SOBP by a different study shows that Linear Least Squares (lsqlin) approximation leads to a better SOBP.