Claim Missing Document
Check
Articles

Found 5 Documents
Search

Analisis Sentimen Pada Bencana Alam Menggunakan Deep Neural Network dan Information Gain M Burhanis Sulthan; Imam Wahyudi; Luluk Suhartini
Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) Vol 2 No 2 (2021): Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) Oktober 2021
Publisher : Universitas Islam Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31102/jatim.v2i2.1273

Abstract

Kemajuan teknologi informasi dan komunikasi membuat informasi terkait bencana alam menjadi lebih cepat tersebar, salah satu soial media yang banyak digunakan yaitu twitter. Pada penelitian ini mengklasifikasikan teks terkait analisis sentimen terhadap bencana alam yang terjadi. Metode klasifikasi yang digunakan adalah Deep Neural Network (DNN),. Jadi untuk mempercepat proses klasifikasi digunakan teknik seleksi fitur yaitu Information Gain (IG) untuk memilih fitur-fitur yang terbaik dari hasil ekstrasi. Kemudian evaluasi dan validasi dilakukan untuk mengetahui hasil kinerja klasifikasi. Digunakan confusion matrix dan 10 fold validasi sebagai proses evaluasi dan validasi didalam penelitian ini. Pada penelitian ini menggunakan beberapa metode yaitu Naïve bayes, Random Forest, Decision Tree dan Support Vector Machine. Hasil akurasi dari metode Deep Neural Network dengan Information Gain lebih besar dari metode yang lain.
ANALISA PENENTUAN CLUSTER TERBAIK PADA METODE K-MEANS MENGGUNAKAN ELBOW TERHADAP SENTRA INDUSTRI PRODUKSI DI PAMEKASAN Imam Wahyudi; M Burhanis Sulthan; Luluk Suhartini
Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) Vol 2 No 2 (2021): Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) Oktober 2021
Publisher : Universitas Islam Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31102/jatim.v2i2.1274

Abstract

Sebuah industri sangat berpotensi untuk di kembangkan dalam negeri karena negara indonesia sendiri mempunyai sumber daya insani yang kreatif dan inovatif, serta di dukung dengan sumberdaya alamnya yang juga sangat bagus. Sehingga bisa bersaing dalam dunia industri nasional maupun internasional. Harus ada support dari pemerintah setempat. Salah satunya adalah mengelompokkan industri-industri yang harus di perhatikan oleh pemerintah, dalam penelitian ini akan di eksperimen dengan ilmu komputer data mining K-Means dengan tambahan metode penentuan jumlah k nya memakai ELBOW. Dalam penelitian ini akan bereksperimen menggunakan data sentra industri yang di peroleh dari DISPERINDAG dari tahun 2011 sampai tahun 2017. Dengan memakai pendekatan clustering nantinya akan terbentuk cluster-cluster yang satu sama lain dalam klaster sama datanya hampir berdekatan, karena k-means sendiri memilih data yang terdekat dan dikelompok dalam suatu cluster. Dari eksperimen memakai metode ELBOW untuk menentukan jumlah K nya pada k-means dan dari proses tersebut didapatkan nilai Sum of square error nya, menggunakan 2 klaster 17,65513, menggunakan 3 klaster 11,45285, menggunakan 4 klaster 8,42658, menggunakan 5 klaster 7,98915 setelah dilihat selisih dari masing –masing jumlah tersebut yang paling banyak selisihnya adalah menggunakan 3 klaster. Dengan selisih 6,20229. Nilai DBInya adalah 0,515 elbow dan k-means sedangkan menggunakan K-means saja di ketahui nilai DBI nya lebih besar yaitu 0,635.
OPTIMASI K-NEAREST NEIGHBOR DENGAN PARTICLE SWARM OPTIMIZATION UNTUK MEMPREDIKSI HARGA TEMBAKAU Luluk Suhartini; M Burhanis Sulthan; Imam Wahyudi
Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) Vol 2 No 2 (2021): Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM) Oktober 2021
Publisher : Universitas Islam Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31102/jatim.v2i2.1293

Abstract

Komoditas tembakau merupakan salah satu penyumbang pendapatan keuangan terbesar bagi negara, menjadi alasan penting dalam menempatkan komoditas tembakau dan produk olahannya sebagai komoditas yang strategis. namun dalam bidang pertanian, hampir semua aktivitas produksi sering dihadapkan dengan permasalahan fluktuasi harga dan hasil produksi. Untuk itu perlu dilakukan peramalan harga pada masa yang akan datang untuk dijadikan acuan dalam mengambil keputusan agar dapat mengurangi risiko serta meningkatkan keuntungan. Dalam penelitian ini digunakan metode K-NN dengan optimasi PSO. Metode ini merupakan salah satu metode yang baik untuk diterapkan dalam peramalan harga dan hasil penelitian menunjukkan bahwa performa K-NN meningkat setelah dioptimasi dengan algoritma PSO. Hal ini dibuktikan dengan penurunan nilai eror (RMSE) pada metode K-NN yang semula 0.093 menjadi 0.072 setelah dioptimasi dengan algoritma PSO. Hasil ini membuktikan bahwa metode K-NN dengan optimasi PSO lebih baik dibandingkan dengan metode K-NN saja.
Pengembangan Sistem Informasi Administrasi Umrah Berbasis Web dengan Metode Rapid Application Development Supriadi, Ahmad; Wahyudi, Imam; Fithriyah, Nadzirotul
COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi Vol 6, No 1 (2025): Kecerdasan Buatan dalam Meningkatkan Efisiensi Bisnis
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/coreai.v6i1.11533

Abstract

Penelitian ini bertujuan untuk merancang Sistem Informasi Pelayanan Administrasi Umrah berbasis web pada PT. Nur Haramain Mulia Tour, Kraksaan, Probolinggo. Sistem ini dirancang untuk mempermudah calon jamaah dalam melakukan pendaftaran dan memperoleh informasi seputar layanan umrah, serta membantu petugas administrasi dalam proses pelayanan dan pendataan jamaah. Metode yang digunakan dalam penelitian ini adalah Rapid Application Development (RAD), yang terdiri atas tiga tahap utama: Requirement Planning, System Design, dan Implementation. Pada tahap pertama, peneliti melakukan observasi, wawancara, dan pengumpulan data untuk mengidentifikasi kebutuhan sistem. Tahap kedua melibatkan proses perancangan sistem sesuai kebutuhan pengguna. Selama tahap ini, pengguna dan calon jamaah dilibatkan dalam pengujian sistem, dan perbaikan dilakukan secara langsung jika ditemukan kesalahan. Tahap terakhir adalah implementasi, di mana rancangan perangkat lunak diterjemahkan ke dalam kode program yang dapat dijalankan. Sistem dikembangkan menggunakan framework Laravel dan basis data MySQL. Hasil dari penelitian ini adalah sebuah sistem informasi yang mampu mengelola data secara terpusat, memungkinkan proses input, penyimpanan, dan pencetakan laporan administrasi umrah secara lebih efisien dan terintegrasi. 
K-Means Clustering dengan Optimasi Algoritma Genetika untuk mengelompokkan daerah budidaya Cabai Jawa Wahyudi, Imam; Sarifah, Luluk; Sukron, Moh
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 2 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i2.9603

Abstract

Ada beberapa tanaman obat yang popular, salah satunya yaitu Cabai Jawa yang juga merupakan salah satu komuditas ekspor yang cukup tinggi dengan nilai jual yang fantastis, namun di Indonesia terutama di wilayah Madura pengetahuan masyarakat tentang hal tersebut masih minim karena memang tidak adanya pembudidayaan dari pemerintah sekitar. Oleh karena itu penelitian bertujuan untuk melakukan Clustering daerah yang membudidayakan tanaman ini sehingga ditemukan daerah yang masuk kategori rendah, sedang dan tinggi dipamekasan. Metode K-Means Clustering adalah metode yang cocok untuk penelitian ini dan alur kerjanya ialah mengelompokkan data n ke dalam cluster yang serupa dan berbeda dengan data cluster yang lainnya. Metode ini dikombinasikan dengan metode Algoritma Genetika sebagai optimasi pada centroid awal sehingga hasil dari clustering ini bisa optimal. Berdasarkan hasil evaluasi menggunakan Silhouette Coefficience didapatkan nilai sebesar 0. 52156 menggunakan GA dan K-Means