Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : ComEngApp : Computer Engineering and Applications Journal

The Eye and Nose Identification Chip Controller-Based on Robot Vision Using Weightless Neural Network Method Zarkasi, Ahmad; Ubaya, Huda; Exaudi, Kemahyanto; Fitriyanto, Megi
Computer Engineering and Applications Journal Vol 13 No 03 (2024)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v13i03.615

Abstract

Increasingly advanced image analysis in computer vision, allowing computers to interpret, identify, and analyze pictures with accuracy comparable to humans. The availability of data sources in decimal, hexadecimal, or binary forms enables researchers to take the initiative in applying their study findings. Decimal formats are typically used on traditional computers like desktops and minicomputers, whereas hexadecimal and binary formats were utilized on single-chip controllers. Weightless Neural Network is a method that can be implemented in a single chip controller. The aim of this research is to develop a facial recognition system, for eye and mouth identification, that works in a single chip controller or also called a microcontroller. The suggested method is a Weightless Neural Network with Immediate Scan approach for processing and identifying eye and nose patterns. The data will be handled in many memory locations that are specifically designed to handle massive volumes of data. The data is made up of primary face data sheets and face input data. The data sets utilized are (x,y) pixels, and frame sizes range from 90x90 pixels to 110x110 pixels. Each face shot will be processed by selecting the region of the eyes and nose and saving it as an image file. The eye and nose will identify the face frame. Next, the photos will be converted to binary format. A magazine matrix will be used to transmit binary data from a minicomputer to a microcontroller via serial connection. Based on a known pattern, the resultant similarity accuracy is 83,08% for the eye and 84,09% for the sternum. In contrast, the similarity percentage for an eye ranges from 70% to 85% for an undefined pattern.
Performance Comparison of Feature Face Detection Algorithm on The Embedded Platform Zarkasi, Ahmad; Nurmaini, Siti; Stiawan, Deris; Suprapto, Bhakti Yudho; Ubaya, Huda; Kurniati, Rizki
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The intensity of light will greatly affect every process carried out in image processing, especially facial images. It is important to analyze how the performance of each face detection method when tested at several lighting levels. In face detection, various methods can be used and have been tested. The FLP method automates the identification of the location of facial points. The Fisherface method reduces the dimensions obtained from PCA calculations. The LBPH method converts the texture of a face image into a binary value, while the WNNs method uses RAM to process image data, using the WiSARD architecture. This study proposes a technique for testing the effect of light on the performance of face detection methods, on an embedded platform. The highest accuracy was achieved by the LBPH and WNNs methods with an accuracy value of 98% at a lighting level of 400 lx. Meanwhile, at the lowest lighting level of 175 lx, all methods have a fairly good level of accuracy, which is between 75% to 83%.
Robot Vision Pattern Recognition of the Eye and Nose Using the Local Binary Pattern Histogram Method Zarkasi, Ahmad; Ubaya, Huda; Exaudi, Kemahyanto; Almuqsit, Alif; Arsalan, Osvari
Computer Engineering and Applications Journal (ComEngApp) Vol. 12 No. 3 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The local binary pattern histogram (LBPH) algorithm is a computer technique that can detect a person's face based on information stored in a database (trained model). In this research, the LBPH approach is applied for face recognition combined with the embedded platform on the actuator system. This application will be incorporated into the robot's control and processing center, which consists of a Raspberry Pi and Arduino board. The robot will be equipped with a program that can identify and recognize a human's face based on information from the person's eyes and nose. Based on the results of facial feature identification testing, the eyes were recognized 131 times (87.33%), and the nose 133 times (88.67%) out of 150 image data samples. From the test results, an accuracy rate of 88%, the partition rate of 95.23%, the recall of 30%, the specificity of 99%, and the F1-Score of 57.5% were obtained.
The Eye and Nose Identification Chip Controller-Based on Robot Vision Using Weightless Neural Network Method Zarkasi, Ahmad; Ubaya, Huda; Exaudi, Kemahyanto; Fitriyanto, Megi
Computer Engineering and Applications Journal (ComEngApp) Vol. 13 No. 3 (2024)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Increasingly advanced image analysis in computer vision, allowing computers to interpret, identify, and analyze pictures with accuracy comparable to humans. The availability of data sources in decimal, hexadecimal, or binary forms enables researchers to take the initiative in applying their study findings. Decimal formats are typically used on traditional computers like desktops and minicomputers, whereas hexadecimal and binary formats were utilized on single-chip controllers. Weightless Neural Network is a method that can be implemented in a single chip controller. The aim of this research is to develop a facial recognition system, for eye and mouth identification, that works in a single chip controller or also called a microcontroller. The suggested method is a Weightless Neural Network with Immediate Scan approach for processing and identifying eye and nose patterns. The data will be handled in many memory locations that are specifically designed to handle massive volumes of data. The data is made up of primary face data sheets and face input data. The data sets utilized are (x,y) pixels, and frame sizes range from 90x90 pixels to 110x110 pixels. Each face shot will be processed by selecting the region of the eyes and nose and saving it as an image file. The eye and nose will identify the face frame. Next, the photos will be converted to binary format. A magazine matrix will be used to transmit binary data from a minicomputer to a microcontroller via serial connection. Based on a known pattern, the resultant similarity accuracy is 83,08% for the eye and 84,09% for the sternum. In contrast, the similarity percentage for an eye ranges from 70% to 85% for an undefined pattern.