MSK. Tony Suryo Utomo
Mechanical Engineering Department, Faculty Of Engineering, Diponegoro University Jl. Prof. Soedharto SH Tembalang Semarang 50275

Published : 27 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 27 Documents
Search

SIMULASI AERODINAMIKA DESAIN MOBIL HEMAT BAHAN BAKAR ‘ANTAWIRYA’ DENGAN METODE COMPUTATIONAL FLUID DYNAMICS Abdul Hadi Hanif; MSK. Tony Suryo Utomo
JURNAL TEKNIK MESIN Vol 3, No 2 (2015): VOLUME 3, NOMOR 2, APRIL 2015
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1430.422 KB)

Abstract

Increasingly depleted world’s oil deposit has encouraged the automotive industry, including the government and universities, to be more innovative in their efforts to find a breakthrough. More aerodynamic vehicle design will produce a smaller drag coefficient value, thus reducing fuel consumption. The purpose of this research is to get the magnitude of the drag coefficient as low as possible in the design of ‘Antawirya’ fuel efficient car. It focuses on the phenomenon of fluid flow that takes place all around the car and the effort to create a more aerodynamic car body design. Car aerodynamics simulations are conducted in the wind tunnel set as the computing domain by Computational Fluid Dynamics. The k-epsilon realizable standard wall function method is used in this research, which is specified based on the phenomenon of validation in backward-facing step by knowing the separation and the reattachment point on these phenomena. This research also uses the second order upwind as the discretization method for more accurate results. The number of each grid for previous Antawirya and Antawirya konsep 1 are 862391 and 767870. The results of the simulation show a reduction of drag coefficient on Antawirya konsep 1 compared to the previous Antawirya. Drag coefficient has shown a decrease by 38,18 % from 0,385 into 0,238 at a rate of 10 km/h, a decrease by 39,14 % from 0,373 into 0,227 at 20 km/h, a decrease by 39,84 % from 0,369 into 0,222 at 30 km/h, a decrease by 40,27 % from 0,365 into 0,218 at 40 km/h, a decrease by 40,38 % from 0,364 into 0,217 at 50 km/h, and a decrease by 40,27 % from 0,360 into 0,215 at 60 km/h. The separation and wake phenomenon also occurred on the back of the car body as the separation and wake on Antawirya konsep 1 are shorter than the previous Antawirya design. This is due to the fact that the body of Antawirya konsep 1 has a more aerodynamic design.
PERBANDINGAN KONSUMSI BAHAN BAKAR ANTARA BUS DAN TRAVEL MINIBUS RUTE SEMARANG – SOLO SAMPAI TAHUN 2040 MENGGUNAKAN SOFTWARE LEAP Noviyanto Rahmat Zulem; MSK. Tony Suryo Utomo
JURNAL TEKNIK MESIN Vol 3, No 2 (2015): VOLUME 3, NOMOR 2, APRIL 2015
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (617.79 KB)

Abstract

The increasing number of vehicles with high fuel consumption and weak emission control policies negatively impact the environment. This research designed to projecting comparison of enery consumption of fuel and exaust emissions on bus and travel minibus route Semarang – Solo on 2013- 2040 using LEAP software with two scenarios, as for these scenarios is business as usual (BAU).Test results using LEAP shows the amount of fuel required bus in 2040 based on the BAU scenario amounted to 1.559.800 Gigajoules or to 43.448.467 liters of diesel fuel and 609.700 Gigajoules or 16.983.286 liters of diesel fuel based on the 2040 AFE scenario or fuel savings up to 39 % . The amount of fuel required for travel minibus based on the BAU scenario in 2040 was 1.333.000 Gigajoules or 37.130.919 liters of diesel fuel and 1.308.300 Gigajoules or 37.130.919 liters of diesel fuel based on the 2040 AFE scenario or savings up to 5  %.Carbon Dioxide Non Biogenic emissions produced by buses and travel minibus in 2040 for the AFE scenario decreased by 45 % compare to BAU scenario, but the value of  NOx and CO in scenario AFE decrease 20 % compare to BAU scenario.
PREDIKSI KONSUMSI BAHAN BAKAR MINYAK UNTUK KENDARAAN DARAT JALAN RAYA SAMPAI TAHUN 2040 MENGGUNAKAN SOFTWARE LEAP Muhammad Fauzi Aditya Nasri; MSK. Tony Suryo Utomo
JURNAL TEKNIK MESIN Vol 3, No 2 (2015): VOLUME 3, NOMOR 2, APRIL 2015
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (504.62 KB)

Abstract

This study is designed to predict the fuel consumption for passenger cars, motorcycles, buses and trucks in Indonesia from 2010 to 2040 using LEAP software with two scenarios, as which is business as usual (BAU) by assuming growth of fuel consumption without changes from policies and technologies sector and advanced fuel economy (AFE) assuming an increase in vehicle technology which can affect fuel consumption. The simulation results shows fuel required  for passenger car type vehicle in 2040 based on the BAU is 2,579.6 million gigajoules and 2,229.9 million gigajoules for AFE or savings up to 13.56%. Fuel required for motorcycles in 2040 based on the BAU is 1.792,8 million gigajoules and 1.559,9 million gigajoules based on AFE in 2040 or savings up to 13%. Fuel required bus type vehicle in 2040 based on the BAU is 689,6 million gigajoules and 621,9 million based on AFE or fuel savings up to 9,82% . Fuel required for truck type vehicle based on the BAU in 2040 is 4.598,2 million gigajoules and 3,983.0 million gigajoules based on AFE or savings up to 13.39 %.  Exhaust emissions produced by vehicles are passenger cars, motorcycles, buses and trucks in 2040 for the BAU is Carbon Dioxide Non Biogenic (CO2) 266,4 billion Metric Tonnes, Carbon Monoxide (CO) 56,7 billion Metric Tonnes and Nitrogen Oxides (NOx) 31,1 billion Metric Tonnes. As for the AFE, in 2040 for CO2 230,7 billion Metric Tonnes, CO 56,7 billion Metric Tonnes and NOx 31.1 billion Metric Tonnes. At year 2040 the value of CO2 on AFE scenario decreased by 13,41% compare to BAU scenario, but the value of  NOx and CO in the AFE and the BAU scenario is same.
SIMULASI AERODINAMIKA MOBIL HEMAT BAHAN BAKAR ‘ANTAWIRYA’ KONSEP 2 MENGGUNAKAN METODE COMPUTATIONAL FLUID DYNAMICS (CFD) Fathony Imaduddien Yusuf; MSK. Tony Suryo Utomo
JURNAL TEKNIK MESIN Vol 3, No 3 (2015): VOLUME 3, NOMOR 3, JULI 2015
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1208.754 KB)

Abstract

Pada  akhir  Juli  2011,  jumlah  cadangan  minyak  di  negara-negara anggota IEA (International Energy Agency) sebesar 4.1 miliar barel. Di Indonesia, sekitar Rp. 193,8 triliun  atau 11.5% dialokasikan untuk subsidi BBM pada APBN 2013 di mana  lebih dari 50% subsidi BBM tersebut  dinikmati oleh 20% orang  terkaya di Indonesia. Sebagai tindakan yang membantu mengatasi masalah ini, dilaksanakan peneletian ini. Penelitian ini melakukan modifikasi pada exterior mobil agar memiliki gaya gesek atau CD (Coefficient of Drag) terhadap udara yang  rendah sehingga dapat melaju dengan efisiensi yang lebih baik. Sebelum simulasi, dilakukan terlebih dahulu validasi untuk menentukan solusi kontrol yang tepat. Validasi  pada Backward Facing Step dilakukan pada aliran internal bergeometri 2 dimensi yang mengacu pada jurnal yang sudah dipublikasikan. Hal ini untuk mencari reattachment point pada dasar sisi yang bersinggungan tepat dengan garis deviding streamline di mana aliran tidak kembali menuju arah inlet. Setelah dilakukan validasi dengan tiga model turbulensi, ditentukan Realizable pada solusi kontrol karena memiliki nilai galat terendah terhadap jurnal yang divalidasikan dengan nilai 3.96%.  Hasil simulasi yang menggunakan software CFD ANSYS 14.0 ini menampilkan vektor kecepatan pada 5 bidang horizontal, 5 bidang vertikal, 1 bidang simetris, kontur tekanan statis tampak isometric dan tampak belakang. Simulasi dilakukan pada 6 kecepatan: 10 km/j hingga 60 km/j dengan interval 10km/j. Hasil simulasi dapat dikatakan layak diterima karena sudah melewati beberapa syarat dan kriteria yang sudah ditentukan. Setelah dilakukan simulasi, Konsep 2 (hasil mobil yang dikembangkan) CD dan Re yang lebih rendah di setiap kecepatannya dibandingkan Antawirya dengan penurunan CD terbesar bernilai 0.196 berada di kecepatan 60 km/j atau menghemat 45.617%
ESTIMASI KEBUTUHAN BAHAN BAKAR EXECUTIVE SHUTTLE BUS DI WILAYAH SEMARANG SAMPAI TAHUN 2030 MENGGUNAKAN SOFTWARE LEAP (Studi Kasus: Executive Shuttle Bus Jurusan Semarang – Purwokerto) Siska Septi Wijayanti; MSK Tony Suryo Utomo
JURNAL TEKNIK MESIN Vol 2, No 1 (2014): VOLUME 2, NOMOR 1, JANUARI 2014
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (811.222 KB)

Abstract

Konsumsi bahan bakar minyak pada sektor transportasi terus meningkat sejalan dengan pertumbuhan ekonomi dan mobilitas masyarakat. Karena tingginya harga bahan bakar minyak baru-baru ini, berbagai studi penelitian dan perencanaan yang berkaitan dengan kebijakan pemakaian kendaraan bermotor banyak dikembangkan. Hal ini penting guna mengembangkan rencana pengelolaan yang optimal dengan memperhatikan trend dan intensitas energi. Salah satu upaya untuk mengurangi permasalahan transportasi adalah dengan adanya layanan executive shuttle bus yang dapat mengefisiensikan pergerakan penumpang antar kota dalam provinsi. Model perencanaan energi yang digunakaan adalah software LEAP, LEAP digunakan untuk memprediksi tingkat konsumsi bahan bakar dan emisi faktor CO2 Non-Biogenic, NO, CO, SO2, NOx dan VOCs sesuai dengan jenis kendaraan yang ada, kebutuhan dasar transportasi , konsumsi energi dan perhitungan total emisi menggunakan beberapa skenario, skenario tersebut adalah business as usual, advanced fuel economy, alternative energy replacement. Hasil dari perencanaan energi didapat total konsumsi bahan bakar armada shuttle bus dari tahun dasar sampai dengan tahun 2030 berdasarkan skenario bussiness as usual adalah 2.139.262 Gigajoule atau setara dengan 42.785.240 liter solar. Pada proyeksi konsumsi bahan bakar dengan menggunakan skenario advanced fuel economy adalah 1.965.710 Gigajoule atau setara dengan 39.314.200 liter solar. Berdasarkan skenario alternative energy replacement dimana CNG menjadi alternatif energi pengganti didapat 1.869.937 Gigajoule atau setara 37.398.740 liter solar. Total emisi gas emisi CO2 Non-Biogenic, N2O, CO, NOx dan VOCs yang dihasilkan menurut TED (Technology and Environmental Database) LEAP secara kumulatif pada skenario BaU (156.863; 4,3; 1.069; 2118; 376,5) metrik ton. Sedangkan pada skenario advanced fuel economy (144.13; 3,9; 982,9; 1.946; 346) metrik ton dan alternative energy replacement (40.504; 4; 1.007; 1995; 354) metrik ton.
ANALISA PENGARUH LAJU ALIRAN PARTIKEL PADAT TERHADAP SUDU-SUDU TURBIN REAKSI PADA SISTEM PEMBANGKIT LISTRIK TENAGA UAP MENGGUNAKAN CFD Hariri Dwi Kusuma; MSK. Tony Suryo Utomo
JURNAL TEKNIK MESIN Vol 2, No 4 (2014): VOLUME 2, NOMOR 4, OKTOBER 2014
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (686.855 KB)

Abstract

A good quality of steam is essentially needed on power plant system. The main function of this steam is to rotate steam turbine and to couple generator for produce electric. The use of the steam bean is very risky because of the relatively high velocity fluid that comes out of the previous step due to the narrowing of the flow. High velocity may cause huge turbulence which affects the rate of erosion in steam turbine blade. The purpose of this study is to determine the effect of effect of mass flow rate of solid particle of the fluid toward the erosion rate in the blade using CFD. Variations of the mass flow rate of solid particle are 1 kg/s, 1,2 kg/s, 1,4 kg/s, 1,6 kg/s, 1,8 kg/s, and 2 kg/s. Simulation results shows that the increased mass flow rate of solid particle affects to the increasing the erosion rate.
ANALISA EFISIENSI EXERGI BOILER WANSON III PADA UNIT KILANG DI PUSAT PENDIDIKAN DAN PELATIHAN MINYAK DAN GAS BUMI ( PUSDIKLAT MIGAS ) CEPU MSK. Tony Suryo Utomo; Eko Siswanto
JURNAL TEKNIK MESIN Vol 3, No 2 (2015): VOLUME 3, NOMOR 2, APRIL 2015
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (830.667 KB)

Abstract

This paper discusses the analysis of efficiency exergy of boiler Wanson on refinery unit at PUSDIKLAT MIGAS Cepu is order to identify the actual energy used or the quality results of the actual energy consumption and actual energy loss as a result from irreversible process. Boiler is the biggest source of exergy destruction in a Steam Power Plant’s System and plant systems, hence there is a big opportunity to increase the efficiency in performance. Therefore the bigger efficiency in boiler’s performance, the lower production cost for fuel consumption in industry. Boilers are analyzed using fuel Residue (MFO) on assuming constant environment temperature and pressure of 25oC and 1 bar within twenty-four hours. The result are the average efficiency exergy is 58.13% and the average energy efficiency is 79.60%. Based on the results of the research that the total rate of destruction exergy in the boiler is 34.833 MW or 38.92% of the incoming exergy of 89.501 MW. The rate of destruction combustor accounted for 24.60%, while the rate of destruction of the heat exchanger provides the largest contribution of 14.32%. The total exergy efficiency, total energy efficiency and total destruction rate are influenced by mass flow rate and the temperature of steam. Exergy efficiency and the rate of exergy destruction in  combustor are influenced by fuel temperature, combustion air temperature, excess air, mixing fuel with air and insulation system in the combustor, while the value of the efficiency and the rate of exergy destruction of heat exchanger affected by mass flow rate of steam, flue gas temperature, cleanliness tubes, insulation and the amount of feedwater system wasted in the blowdown system.
ESTIMASI KONSUMSI SOLAR UNTUK TRUK MIXER DI PT JOKOTOLE TRANSPORT SUB-STATION BALI SAMPAI TAHUN 2040 MENGGUNAKAN SOFTWARE LEAP Agus Faisal Hadi; MSK Tony Suryo Utomo
JURNAL TEKNIK MESIN Vol 3, No 3 (2015): VOLUME 3, NOMOR 3, JULI 2015
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (811.059 KB)

Abstract

Bahan Bakar Minyak (BBM) masih merupakan sumber energi utama dalam sektor industri dan transportasi. Penghematan energi menjadi pekerjaan rumah pemerintah, pada sektor transportasi konsumsi energi mulai dibatasi penggunaanya. Sama halnya dengan kendaraan berat, contohnya adalah truk mixer. Truk ini berfungsi membawa beton ready mix dari batching plant ke tempat dimana proyek bangunan sedang dikerjakan. Oleh karena itu, pada tugas akhir ini akan dilakukan penelitian tentang estimasi konsumsi solar Truk Mixer pada PT Jokotole Transport Sub-Section Bali sampai tahun 2040. Penulis dalam meramal konsumsi bahan bakar ini menggunakan software LEAP (Long-range Energy Alternatives Planning System) dimana penulis menggunakan 2 skenario yaitu Business as Usual (BAU) dan Advanced Fuel Economy (AFE) serta memproyeksikan emisi dari Truk Mixer tersebut. Jumlah solar yang dibutuhkan Truk Mixer pada tahun 2040 berdasarkan skenario BAU adalah 79.171 Barrel of Oil Equivalent atau setara 12.587.199,34 liter solar. Dan berdasarkan skenario AFE, konsumsi solar yang dibutuhkan adalah 66.899 Barrel of Oil Equivalents atau setara 10.636.104,74 liter solar. Emisi gas buang yang dihasilkan truk mixer pada tahun 2040 berdasarkan skenario BAU untuk Carbon Dioxide Non Biogenic  sebesar 33.732 gramme per kilowatt-hour. Emisi gas buang yang lain seperti Carbon Monoxide sebesar 40.792.797 gramme per kilowatt-hour dan Nitrogen Oxides sebesar 86.572.801 gramme per kilowatt-hour. Sedangkan pada skenario AFE, untuk Carbon Dioxide Non Biogenic sebesar 28.504  gramme per kilowatt-hour. Emisi gas buang yang lain seperti Carbon Monoxide 34.469.696 gramme per kilowatt-hour, Nitrogen Oxides 73.153.556 gramme per kilowatt-hour. Untuk tahun 2040 nilai Carbon Dioxide Non Biogenic, Carbon Monoxide dan Nitrogen Oxides pada skenario AFE semuanya turun sebesar 15,55 % dari nilai pada skenario BAU.
ESTIMASI PENGGUNAAN BAHAN BAKAR PADA KENDARAAN ANGKUTAN UMUM BRT DI SEMARANG SAMPAI TAHUN 2030 MENGGUNAKAN SOFTWARE LEAP M. Yusuf Ridlo; MSK Tony Suryo Utomo
JURNAL TEKNIK MESIN Vol 2, No 2 (2014): VOLUME 2, NOMOR 2, APRIL 2014
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (826.89 KB)

Abstract

Bahan bakar fosil merupakan sumber energi yang sangat penting dalam kehidupan sehari-hari terutama di bidang transportasi. Penggunaan bahan bakar fosil dan efek emisnya perlu dilakukan manajemen dan estimasi yang tepat. Salah satu sistem transportasi yang memerlukan manjemen dan estimasi adalah sistem transportasi massal (bus rapid trans/BRT). Perencanaan dilakukan dengan software LEAP dengan beberapa skenario, skenario tersebut adalah business as usual (BAU), alternative energy replacement (AER), dan advanced fuel economy (AFE). Hasil dari perencanaan energi didapat jumlah bahan bakar yang dibutuhkan BRT pada tahu 2030 berdasarkan skenario BAU adalah 296.500Gigajoule atau setara 5.930.000 liter solar, berdasarkan skenario AFE 276.400 Gigajoule atau setara 5.528.000 liter solar, berdasarkan skenario AER 103.300 Gigajoule atau setara 2.706.000 liter solar untuk armada berbahan bakar solar dan 20.400 Gigajoule atau setara 59.804,29 liter untuk armada berbahan bakar CNG. Emisi gas buang yang ditimbulkan pada tahun 2030 berdasarkan skenario BAU  adalah Carbon Dioxide Non Biogenic sebesar 21.700 metrik ton, Carbon Monoxide sebesar 100 metrik ton, Nitrogen Oxides sebesar 300 metrik ton, Non Methane Volatile Organic Compounds sebesar 100 metrik ton, dan Carbon Monoxide dan Non Methane Volatile Organic Compounds yang nilainya sangat kecil di bawah 6 metrik ton. Sedangkan untuk nilai Carbon Dioxide Non Biogenic pada skenario AFE  turun 6,5 % dibanding skenario BAU,dan 50,7% pada skenario AER, untuk Nitrogen Oxides pada skenario AFE  nilainya sama dengan BAU dan turun 66,7% pada skenario AER, sedagkan untuk senyawa lain hampir tidak mengalami perubahan
ANALISA AERODINAMIKA BODY MOBIL HEMAT BAHAN BAKAR ANTAWIRYA KONSEP 3 DENGAN MENGGUNAKAN METODE COMPUTATIONAL FLUID DYNAMICS Rizkya Laila Nursyahbani; MSK. Tony Suryo Utomo
JURNAL TEKNIK MESIN Vol 3, No 2 (2015): VOLUME 3, NOMOR 2, APRIL 2015
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (981.342 KB)

Abstract

Fuel oil declining from year to year since oil resources of the earth are not renewable. Hence, a fuel saving plan is something of considerable importance today. Continued development of technology has enabled automotive engineers to place an emphasis on vehicle fuel consumption by keeping the drag coefficient (Cd) value to minimum, which in turn should improve fuel efficiency. This research is aimed at effort to prouce a more aerodynamic car body design, particularly to redesign the previous Antawirya car known as Antawirya Konsep 3, to simulate and compare the results of both cars, in term of the drag coefficient values, and to learn about the air flow pattern around the car. Car aerodynamics simulation are conducted in wind tunnel set as the computing domain by Computational Fluid Dynamics (CFD). The k-epsilon turbulent realizable standard wall function method is used in this research, which is specified based on the phenomenon of validation in backward-facing step. This research also use the second order upwind as the discretization method for more accurate results. The number of each grid for previous Antawirya and Antawirya konsep 3 are 862391 and 639641. The results of the simulation show a reduction of drag coefficient on Antawirya konsep 3 compare to the previous Antawirya. Drag coefficient has shown a decrease by 24,93% at a rate of 10 km/h, a decrease by 25,20% at 20 km/h, a decrease by 26,01% at 30 km/h, a decrease by 26,02% at 40 km/h, a decrease by 26,37% at 50 km/h, and a decrease by 25,83% at 60 km/h. The separation and wake phenomenon also occurred on the back of the car body, as the separation and wake on Antawirya konsep 3 are shorter than the previous Antawirya design. This is due to the fact that the body of Antawirya konsep 3 has a more aerodynamic.