Muhammad Khusairi Osman
Universiti Teknologi MARA

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

A new procedure for lung region segmentation from computed tomography images Mohd Firdaus Abdullah; Siti Noraini Sulaiman; Muhammad Khusairi Osman; Noor Khairiah Abdul Karim; Samsul Setumin; Iza Sazanita Isa
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp4978-4987

Abstract

Lung cancer is the leading cause of cancer death among people worldwide. The primary aim of this research is to establish an image processing method for lung cancer detection. This paper focuses on lung region segmentation from computed tomography (CT) scan images. In this work, a new procedure for lung region segmentation is proposed. First, the lung CT scan images will undergo an image thresholding stage before going through two morphological reconstruction and masking stages. In between morphological and masking stages, object extraction, border change, and object elimination will occur. Finally, the lung field will be annotated. The outcomes of the proposed procedure and previous lung segmentation methods i.e., the modified watershed segmentation method is compared with the ground truth images for performance evaluation that will be carried out both in qualitative and quantitative manners. Based on the analyses, the new proposed procedure for lung segmentation, denotes better performance, an increment by 0.02% to 3.5% in quantitative analysis. The proposed procedure produced better-segmented images for qualitative analysis and became the most frequently selected method by the 22 experts. This study shows that the outcome from the proposed method outperforms the existing modified watershed segmentation method.
Fault classification on transmission line using LSTM network Abdul Malek Saidina Omar; Muhammad Khusairi Osman; Mohammad Nizam Ibrahim; Zakaria Hussain; Ahmad Farid Abidin
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp231-238

Abstract

Deep Learning has ignited great international attention in modern artificial intelligence techniques. The method has been widely applied in many power system applications and produced promising results. A few attempts have been made to classify fault on transmission lines using various deep learning methods. However, a type of deep learning called long short-term memory (LSTM) has not been reported in literature. Therefore, this paper presents fault classification on transmission line using LSTM network as a tool to classify different types of faults. In this study, a transmission line model with 400 kV and 100 km distance was modelled. Fault free and 10 types of fault signals are generated from the transmission line model. Fault signals are pre-processed by extracting post-fault current signals. Then, these signals are fed as input to the LSTM network and trained to classify 10 types of faults. The white Gaussian noise of level 20 dB and 30 dB signal to noise ratio (SNR) is also added to the fault current signals to evaluate the immunity of the proposed model. Simulation results show promising classification accuracy of 100%, 99.77% and 99.55% for ideal, 30 dB and 20 dB noise respectively. Results has been compared to four different methods which can be seen that the LSTM leading with the highest classification accuracy. In line with the purpose of the LSTM functions, it can be concluded that the method has a capability to classify fault signals with high accuracy.
A Comparison Study of Learning Algorithms for Estimating Fault Location Mimi Nurzilah Hashim; Muhammad Khusairi Osman; Mohammad Nizam Ibrahim; Ahmad Farid Abidin; Ahmad Asri Abd Samat
Indonesian Journal of Electrical Engineering and Computer Science Vol 6, No 2: May 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v6.i2.pp464-472

Abstract

Fault location is one of the important scheme in power system protection to locate the exact location of disturbance. Nowadays, artificial neural networks (ANNs) are being used significantly to identify exact fault location on transmission lines. Selection of suitable training algorithm is important in analysis of ANN performance. This paper presents a comparative study of various ANN training algorithm to perform fault location scheme in transmission lines. The features selected into ANN is the time of first peak changes in discrete wavelet transform (DWT) signal by using faulted current signal acted as traveling wave fault location technique. Six types commonly used backpropagation training algorithm were selected including the Levenberg-Marquardt, Bayesian Regulation, Conjugate gradient backpropagation with Powell-Beale restarts, BFGS quasi-Newton, Conjugate gradient backpropagation with Polak-Ribiere updates and Conjugate gradient backpropagation with Fletcher-Reeves updates. The proposed fault location method is tested with varying fault location, fault types, fault resistance and inception angle. The performance of each training algorithm is evaluated by goodness-of-fit (R2), mean square error (MSE) and Percentage prediction error (PPE). Simulation results show that the best of training algorithm for estimating fault location is Bayesian Regulation (R2 = 1.0, MSE = 0.034557 and PPE = 0.014%).
Enhancing lung lesion localization in CT-scans: a novel approach using FE_CXY and statistical analysis Nurul Najiha Jafery; Siti Noraini Sulaiman; Muhammad Khusairi Osman; Noor Khairiah A. Karim; Mohd Firdaus Abdullah; Iza Sazanita Isa; Zainal Hisham Che Soh
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 2: May 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i2.pp913-925

Abstract

Intelligence algorithm systems rely on a large dataset to effectively extract significant features that can recognize patterns for classification purposes and extensively utilized to assist the physicians in diagnosis of lung cancer. Extracting valuable features from the available dataset is crucial, especially in cases where additional real data may not be readily accessible. In this context, we propose a novel method called feature extraction based on centroid (FE_CXY) for lesion localization, utilizing a statistical approach. The approach begins with a segmentation process that employs image processing techniques to extract features of interest which is data centroid. This extracted data is then used to compute statistical measurements, revealing hidden patterns that contribute to distinguishing between lesion and non-lesion locations. The method’s efficiency is reflected in the development of robust models with improved performance in localizing lung lesions. The study’s statistical findings strongly indicate that FE_CXY plays a crucial role as an important feature for detecting lesion localization supported by a student’s t-test, which identifies a statistically significant difference in the patterns between lesion and non-lesion localization (p<0.05). By incorporating this method into lung cancer detection systems, we anticipate improved accuracy and efficacy, thereby benefiting early diagnosis and treatment planning.
Adaptive fuzzy weighted median filter for microcalcifications detection in digital breast tomosynthesis images Syafiqah Aqilah Saifudin; Siti Noraini Sulaiman; Muhammad Khusairi Osman; Iza Sazanita Isa; Noor Khairiah A Karim; Nur Athiqah Harron
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 1: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i1.pp197-209

Abstract

Breast cancer is a global leading cause of female mortality. Digital breast tomosynthesis (DBT) is pivotal for early breast cancer detection, with microcalcifications serving as crucial indicators. However, the movement of the DBT machine introduces blurry artefacts, potentially impacting accurate diagnosis. This study addresses this challenge by proposing an adaptive fuzzy weighted median filter (AFWMF) to enhance DBT images and aid microcalcification diagnosis. AFWMF automatically determines optimal parameters based on input images, outperforming conventional methods with a threshold range (C) from peak to end of switching. Quantitative assessment reveals peak signal to noise ratio (PSNR), and mean absolute error (MAE) values of 96.2267 and 0.0000636, respectively, demonstrating a significant improvement in microcalcification detection. This study contributes an effective and adaptive enhancement technique for DBT images, promising better breast cancer diagnosis, particularly in microcalcification scenarios.