Samsul Setumin
Universiti Teknologi MARA

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

A new procedure for lung region segmentation from computed tomography images Mohd Firdaus Abdullah; Siti Noraini Sulaiman; Muhammad Khusairi Osman; Noor Khairiah Abdul Karim; Samsul Setumin; Iza Sazanita Isa
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp4978-4987

Abstract

Lung cancer is the leading cause of cancer death among people worldwide. The primary aim of this research is to establish an image processing method for lung cancer detection. This paper focuses on lung region segmentation from computed tomography (CT) scan images. In this work, a new procedure for lung region segmentation is proposed. First, the lung CT scan images will undergo an image thresholding stage before going through two morphological reconstruction and masking stages. In between morphological and masking stages, object extraction, border change, and object elimination will occur. Finally, the lung field will be annotated. The outcomes of the proposed procedure and previous lung segmentation methods i.e., the modified watershed segmentation method is compared with the ground truth images for performance evaluation that will be carried out both in qualitative and quantitative manners. Based on the analyses, the new proposed procedure for lung segmentation, denotes better performance, an increment by 0.02% to 3.5% in quantitative analysis. The proposed procedure produced better-segmented images for qualitative analysis and became the most frequently selected method by the 22 experts. This study shows that the outcome from the proposed method outperforms the existing modified watershed segmentation method.
Digital image enhancement by brightness and contrast manipulation using Verilog hardware description language Zul Imran Azhari; Samsul Setumin; Emilia Noorsal; Mohd Hanapiah Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp1346-1357

Abstract

A foggy environment may cause digitally captured images to appear blurry, dim, or low in contrast. This will impact computer vision systems that rely on image information. With the need for real-time image information, such as a plate number recognition system, a simple yet effective image enhancement algorithm using a hardware implementation is very much needed to fulfil the need. To improve images that suffer from low exposure and hazy, the hardware implementations are usually based on complex algorithms. Hence, the aim of this paper is to propose a less complex enhancement algorithm for hardware implementation that is able to improve the quality of such images. The proposed method simply combines brightness and contrast manipulation to enhance the image. In order to see the performance of the proposed method, a total of 100 vehicle registration number images were collected, enhanced, and evaluated. The evaluation results were compared to two other enhancement methods quantitatively and qualitatively. Quantitative evaluation is done by evaluating the output image using peak signal-to-noise ratio and mean-square error evaluation metrics, while a survey is done to evaluate the output image qualitatively. Based on the quantitative evaluation results, our proposed method outperforms the other two enhancement methods.
Systematic literature review: application of deep learning processing technique for fig fruit detection and counting Ahmad Shukri Firdhaus Kamaruzaman; Adi Izhar Che Ani; Mohammad Afiq Hamdani Mohammad Farid; Siti Juliana Abu Bakar; Mohd Ikmal Fitri Maruzuki; Samsul Setumin; Mokh. Sholihul Hadi
Bulletin of Electrical Engineering and Informatics Vol 12, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i2.4455

Abstract

Deep learning has shown much promise in target identification in recent years, and it's becoming more popular in agriculture, where fig fruit detection and counting have become important. In this study, a systematic literature review (SLR) is utilised to evaluate a deep learning algorithm for detecting and counting fig fruits. The SLR is based on the widely used 'Reporting Standards for Systematic Evidence Synthetics' (ROSES) review process. The study starts by formulating the research questions, and the proposed SLR approach is critically discussed until the data abstraction and analysis process is completed. Following that, 33 relevant research involving the agriculture sector, fruit, were selected from many studies. IEEE, Scopus, and Web of Sciences are three databases to investigate. Due to the lack of fig fruit research, fruit and vegetable studies have been included because they use similar methods and processes. The SLR found that various deep learning algorithms can count fig fruit in the field. Furthermore, as most approaches obtained acceptable results, deep learning's performance is acceptable in F1-score and average precision (AP), higher than 80%. Moreover, improvements can be produced by enhancing the existing deep learning model with the personal dataset.
COVID-19 classification using CNN-BiLSTM based on chest X-ray images Denis Eka Cahyani; Anjar Dwi Hariadi; Faisal Farris Setyawan; Langlang Gumilar; Samsul Setumin
Bulletin of Electrical Engineering and Informatics Vol 12, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i3.4848

Abstract

Cases of the COVID-19 virus continue to spread still needs to be considered even though we have entered the post-pandemic era. Rapid identification of COVID-19 cases is necessary to prevent the virus from spreading further. This study developed a chest X-ray-based (CXR) COVID-19 classification for COVID-19 detection using the convolutional neural network-bidirectional long short-term memory (CNN-BiLSTM) combination model and compared the CNN-BiLSTM combination model with CNN models. The CNN models used in this study are the transfer learning models, namely Resnet50, VGG19, InceptionV3, Xception, and AlexNet. This research classifies CXR into three groups: COVID-19, normal, and viral pneumonia. In comparison to other models, the Resnet50-BiLSTM model is the most accurate and hence the best. The accuracy of the Resnet50-BiLSTM model was 98.48%. The model that obtains the next highest accuracy i.e Resnet50, VGG19-BiLSTM, VGG19, InceptionV3-BiLSTM, InceptionV3, Xception-BiLSTM, Xception, AlexNet-BiLSTM, and AlexNet. In this study, precision, recall, and F1-measure are also employed to demonstrate that Resnet50-BiLSTM achieves the highest value compared to other approaches. When compared to previous studies, this study enhances classification performance results.
A Bibliometric Analysis of Metaheuristic Research and Its Applications Hendy Hendy; Mohammad Isa Irawan; Imam Mukhlash; Samsul Setumin
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 9 No 1 (2023): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v9i1.2675

Abstract

Metaheuristic algorithms are generic optimization tools to solve complex problems with extensive search spaces. This algorithm minimizes the size of the search space by using effective search strategies. Research on metaheuristic algorithms continues to grow and is widely applied to solve big data problems. This study aims to provide an analysis of the performance of metaheuristic research and to map a description of the themes of the metaheuristic research method. Using bibliometric analysis, we examined the performance of scientific articles and described the available opportunities for metaheuristic research methods. This study presents the performance analysis and bibliometric review of metaheuristic research documents indexed in the Scopus database between the period of 2016-2021. The overall number of papers published at the global level was 3846. At global optimization, heuristic methods, scheduling, genetic algorithms, evolutionary algorithms, and benchmarking dominate metaheuristic research. Meanwhile, the discussion on adaptive neuro-fuzzy inference, forecasting, feature selection, biomimetics, exploration, and exploitation, are growing hot issues for research in this field. The current research reveals a unique overview of metaheuristic research at the global level from 2016-2021, and this could be valuable for conducting future research.