Rika Rosnelly
University Of Potensi Utama Medan

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Identification of Malaria Parasite Patterns With Gray Level Co-Occurance Matrix Algorithm (GLCM) Annas Prasetio; Rika Rosnelly; Wanayumini
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 3 (2022): Juni 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (567.693 KB) | DOI: 10.29207/resti.v6i3.3850

Abstract

The results of the test using 5 data of malaria parasite test imagery found that image 1 has an average accuracy value of the energy of 0.55627, homogeneity average of 0.8371, PSNR of 6.1336db, and MSE of 0.24358. Image 2 has an average energy accuracy value of 0.22274, an average Homonegity of 0.98532, a PSNR of 6.1336db, and an MSE of 0.24358. Image 3 has an energy average accuracy value of 0.28735, a Homonegity average accuracy value of 0.9793, a PSNR of 6.133db, and an MSE of 0.24358. Image 4 has an energy average accuracy value of 0.32907 and an average homogeneity accuracy value of 0.97073, PSNR 6.133db, and MSE 0.24358. Image 5 has an average accuracy value of 0.74102, Homonegity average of 0.99844, PSNR of 6.133db, and MSE of 0.4358. Image 6 has an accuracy value of 0.34758 energy, an average accuracy value of homogeneity of 0.99129, a PNSR of 6.133db, and an MSE of 0.24358. Obtained the rule if the average value of energy > = 0.50 then the pattern of malaria parasites is very clear, namely Image 1 and image 5 with a pattern of malaria parasites is very clear.