Said Najah
Sidi Mohamed Ben Abdellah University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Girth aware normalized min sum decoding algorithm for shorter length low density parity check codes Abdelilah Kadi; Hajar El Ouakili; Rachid El Alami; Said Najah
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1692-1700

Abstract

Recently, short block codes are in great demand due to the emergent applications requiring the transmission of a short data unit and can guarantee speedy communication, with a minimum of latency and complexity which are among the technical challenges in today’s wireless services and systems. In the context of channel coding using low density parity check (LDPC) codes, the shorter length LDPC block codes are more likely to have short cycles with lengths of 4 and 6. The effect of the cycle with the minimum size is that this one prevents the propagation of the information in the Tanner graph during the iterative process. Therefore, the message decoded by short block code is assumed to be of poor quality due to short cycles. In this work, we present a study of the evolution of the messages on check nodes during the iterative decoding process when using the LDPC decoding algorithm normalized min sum (NMS), to see the destructive effect of short cycles and justify the effectiveness of the girth aware normalized min sum (GA-NMS) decoding LDPC codes algorithm in terms of correction of the errors, particularly for the codes with short cycles 4 and 6. In addition to this, the GA-NMS algorithm is evaluated in terms of bit error rate performance and convergence behavior, using wireless regional area networks (WRAN) LDPC code, which is considered as a short block code.
A weighted group shuffled decoding for low-density parity-check codes Fatima Zahrae Zenkouar; Mustapha El Alaoui; Said Najah
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 1: January 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i1.pp375-381

Abstract

In this paper, we have developed several concepts such as the tree concept, the short cycle concept and the group shuffling concept of a propagation cycle to decrypt low-density parity-check (LDPC) codes. Thus, we proposed an algorithm based on group shuffling propagation where the probability of occurrence takes exponential form exponential factor appearance probability belief propagation-group shuffled belief propagation (EFAP-GSBP). This algorithm is used for wireless communication applications by providing improved decryption performance with low latency. To demonstrate the effectiveness of our suggested technique EFAP-GSBP, we ran numerous simulations that demonstrated that our algorithm is superior to the traditional BP/GSBP algorithm for decrypting LPDC codes in both regular and non-regular forms