Sabah Anwer Abdulkareem
University of Diyala

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Soft computing techniques for early diabetes prediction Sabah Anwer Abdulkareem; Hussein Y. Radhi; Yousra Ahmed Fadil; Hussain Mahdi
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 2: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i2.pp1167-1176

Abstract

Diabetes mellitus is a chronic, life-threatening, and complicated condition. Around 1.5 million deaths due to diabetes have been documented, according to a World Health Organization (WHO) estimation in 2019. In the world of medicine, predicting diabetes risk is a difficult and time-consuming task. Many past studies have been conducted to investigate and clarify diabetes symptoms and variables. To solve these persisting issues, however, more critical clinical criteria must be considered. A comparative analysis based on three soft computing strategies for diabetes prediction has been carried out and achieved in this work. Among the computational intelligence methods used in this study are fuzzy analytical hierarchy processes (FAHP), support vector machine (SVM), and artificial neural networks (ANNs). The techniques reveal promising performance in predicting diabetes reliably and effectively in terms of several classification evaluation metrics, according to experimental analysis and assessment conducted on 520 participants using a publicly available dataset.