Yousra Ahmed Fadil
University of Diyala

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Soft computing techniques for early diabetes prediction Sabah Anwer Abdulkareem; Hussein Y. Radhi; Yousra Ahmed Fadil; Hussain Mahdi
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 2: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i2.pp1167-1176

Abstract

Diabetes mellitus is a chronic, life-threatening, and complicated condition. Around 1.5 million deaths due to diabetes have been documented, according to a World Health Organization (WHO) estimation in 2019. In the world of medicine, predicting diabetes risk is a difficult and time-consuming task. Many past studies have been conducted to investigate and clarify diabetes symptoms and variables. To solve these persisting issues, however, more critical clinical criteria must be considered. A comparative analysis based on three soft computing strategies for diabetes prediction has been carried out and achieved in this work. Among the computational intelligence methods used in this study are fuzzy analytical hierarchy processes (FAHP), support vector machine (SVM), and artificial neural networks (ANNs). The techniques reveal promising performance in predicting diabetes reliably and effectively in terms of several classification evaluation metrics, according to experimental analysis and assessment conducted on 520 participants using a publicly available dataset.
Enhancement of medical images using fuzzy logic Yousra Ahmed Fadil; Baidaa Al-Bander; Hussein Y. Radhi
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i3.pp1478-1484

Abstract

Image enhancement is one of the most critical subjects in computer vision and image processing fields. It can be considered as means to enrich the perception of images for human viewers. All kinds of images typically suffer from different problems such as weak contrast and noise. The primary purpose of image enhancement is to change an image's visual appearance. Many algorithms have recently been proposed for enhancing medical images. Image enhancement is still deemed a challenging task. In this paper, the fuzzy c-means clustering (FCM) technique is utilized to enhance the medical images. The method of enhancement consists of two stages. The proposed algorithm conducts a cluster test on the image pixels. It then increases the difference of gray level between the diverse objects to accomplish the enhancement purpose of the medical images. The experimental results have been tested using various images. The algorithm enhanced the small target of the image to a reasonable limit and revealed favorable performance. The results of image enhancement techniques were evaluated by using terms of different criteria such as peak signal to noise ratio (PSNR), mean square error (MSE) and average information contents (AIC), showing promising performance.