Claim Missing Document
Check
Articles

Found 2 Documents
Search

Transforming Agriculture: An Insight into Decision Support Systems in Precision Farming Yi, Ding; Jun, Luo; Haodic, Gao; Xing, Zhang; Lie, Ye; Maidin, Siti Sarah; Ishak, Wan Hussain Wan; Wider, Walton
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.274

Abstract

Precision agriculture seamlessly incorporates advanced technologies and data analysis to improve farming efficiency and sustainability through immediate resource allocation. Therefore, this study aims to synthesize research findings related to agriculture, Decision Support Systems, and precision agriculture through a systematic literature review conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search was performed on the Scopus database, specifically focusing on publications published in English between the years 2017 and 2023. Out of 126 periodicals, a rigorous process was used to determine which publications met the specific criteria for inclusion and exclusion. As a result, only 8 relevant studies were chosen. The review emphasizes the substantial capacity of Decision Support Systems in precision agriculture, demonstrating that DSS has the capability to enhance crop yields by 15% and decrease water consumption by 20%. Through the utilization of big data, machine learning, and advanced technologies, Decision Support Systems has the potential to transform the agricultural industry by enhancing productivity, optimizing resource allocation, and enabling early identification of pests and diseases. The utilization of real-time data from Decision Support Systems empowers farmers to make well-informed choices, effectively managing production while upholding environmental sustainability. This, in turn, plays a crucial role in ensuring the economic viability of farms and enhancing global food security. However, addressing challenges like data privacy concerns, enhancing user-friendly interfaces, establishing robust data administration infrastructure, and providing adequate training and support for end-users is imperative for the successful implementation of data-driven Decision Support Systems in precision agriculture.
Implementation of Machine Learning Algorithms for Detecting Bot and Fraudulent Accounts on Instagram Based on Public Profile Characteristics Maidin, Siti Sarah; Xing, Zhang; Lie, Ye
International Journal for Applied Information Management Vol. 4 No. 4 (2024): Regular Issue: December 2024
Publisher : Bright Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/ijaim.v4i4.94

Abstract

The rapid growth of Instagram as a social media platform has led to increased challenges related to fake accounts, including bots, spam, and scam profiles, which threaten the integrity and trustworthiness of online information. This study implements machine learning algorithms, particularly the Random Forest classifier, to detect and classify Instagram accounts into four categories: Real, Bot, Spam, and Scam, based on publicly available profile characteristics. A dataset of 15,000 Instagram profiles was collected and preprocessed, extracting features such as follower count, following count, posting frequency, and presence of profile information. The Random Forest model was trained and evaluated, achieving an accuracy of 97% with high precision and recall across all categories. Behavioral analysis revealed distinct patterns in following/follower ratios, posting activity, and mutual friends that differentiate genuine users from fake accounts. Feature importance ranking highlighted follower count as the most influential attribute for classification. The model demonstrated strong robustness through ROC and Precision-Recall curves, underscoring its effectiveness in a multiclass classification task. This approach not only enhances automated detection and moderation of malicious accounts but also contributes to maintaining a safer social media environment by mitigating misinformation and fraud. Future work could improve detection by incorporating temporal activity data, linguistic analysis, and real-time monitoring to adapt to evolving deceptive behaviors. Taken together, this study confirms the viability of machine learning methods in addressing the growing issue of fake accounts on Instagram, offering scalable and interpretable solutions for social media security.