Bernardo Nugroho Yahya
Industrial and Management Engineering Department, Hankuk University of Foreign Studies, Oedaero 81, Mohyeonmyon, Cheoingu, Yongin, South Korea 449791

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Evaluasi Metode Ekstraksi Fitur Hu Moment Invariants untuk Pengenalan Aktivitas Manusia Kurniawan, Hans Christian; Soemarto, Kevin Suryajaya; Yahya, Bernardo Nugroho
Jurnal Telematika Vol. 15 No. 2 (2020)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v15i2.367

Abstract

Vision-based Human Activity Recognition has been widely used due to a bunch of video data availability in the present days through CCTV and another mechanism which contains some human activities. This data is going to be very useful to improve and automate decision-making in several fields including security surveillance. In this field, it is important to achieve a good performance (i.e., accuracy) inefficient computational time. While there are many approaches in this field, most complex approaches require high computational time. In this work, we are evaluating Hu Moments performance, as well as being compared to other methods (i.e., Zernike Moment and Histogram of Oriented Gradient) by its accuracy and computational time. We also improved HAR flow by adding image denoising which has proven effective in increasing accuracy. The testing process includes videos that contain human activities such as walking, jogging, and running. The result shows that Hu Moments is superior among other methods, however there’s also some room for improvements found through this experiment.  Dalam era di mana terdapat banyak data video yang berisi aktivitas manusia, baik melalui rekaman CCTV maupun mekanisme lain, data tersebut menjadi sangat berharga untuk dapat diproses untuk pengenalan aktivitas manusia, atau Human Activity Recognition (HAR) yang dapat membantu pengambilan keputusan, di antaranya security surveillance. Untuk itu, diperlukan akurasi yang tinggi dan waktu komputasi yang efisien. Meskipun telah banyak metode di ranah ini, suatu teknik yang kompleks pada umumnya membutuhkan waktu komputasi yang tinggi. Dalam penelitian ini, dilakukan evaluasi dengan menggunakan metode Hu Moments yang akan dibandingkan dengan metode lainnya, yaitu Zernike Moment dan Histogram of Oriented Gradient (HOG), untuk segi akurasi dan waktu komputasinya. Ditambahkan juga tahap image denoising yang mampu meningkatkan akurasi. Proses pengujian menggunakan berbagai data video aktivitas manusia yang meliputi: berjalan, joging, dan berlari. Hasil riset menunjukkan bahwa metode Hu Moments memiliki performa yang lebih unggul dibandingkan metode ekstraksi fitur lainnya. Berdasarkan eksperimen yang dilakukan, terdapat beberapa area yang masih dapat ditingkatkan, untuk penelitian selanjutnya.
On-Foot Hyperlocal Delivery - An Overview, Challenges, and Opportunities: Case Studies in Korea Yahya, Bernardo Nugroho
Jurnal Teknik Industri: Jurnal Keilmuan dan Aplikasi Teknik Industri Vol. 22 No. 2 (2020): December 2020
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9744/jti.22.2.75-84

Abstract

During the Covid19 pandemic, many local business were struggling to survive. With the rising of click and collect solutions, business strives to survive by offering pick-up points and maintaining the social distance policy. The demand for goods and services of customers are met instantly from the local offline shops via digital platform. Meanwhile, local businesses in a specific geographical area are still striving from the hard times due to least popularity and competitivenes in the services such as delivery. Hyperlocal delivery comes into the logistics industry to meet the issues from local businesses. While the hyperlocal delivery terminology is still new, there have been some real world practices. This study attempts to define the hyperlocal delivery and explore multiple case studies to analyze the on-foot delivery as a rising of quick commerce in the gig economy. The multiple case studies will take place on the hyperlocal delivery business models in South Korea. The overview of the hyperlocal “on-foot” delivery will be described in four dimension of analysis; strategy, customer, cost-revenue, and process model. At the end, some research challenges and opportunities are presented to show how the research communities can contribute to the field