Claim Missing Document
Check
Articles

Found 12 Documents
Search

Numerical Simulation of the Effect of Wind Velocity on the Counter-Rotating Wind Turbines Performance Irawan, Yosua Heru; Bramantya, Muhammad Agung
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol 4, No 1 (2019)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (705.396 KB) | DOI: 10.22219/jemmme.v4i1.7672

Abstract

The counter-rotating wind turbines (CRWT) is a wind turbine model developed from a single rotating wind turbine (SRWT) model with a horizontal axis. CRWTs have two rotors rotating in opposite directions on the same axis. The purpose of this research is to investigate the effect of wind velocity on CRWTs performance with different axial distance ratio. The flow around CRWTs is simulated using computational fluid dynamic (CFD) with ANSYS Fluent. The simulation consists of two steps: obtaining the optimum rotation and rotor torque, respectively. These two values are used to calculate the mechanical power of the rotors. In this simulation, the wind velocities are 2 m/s; 3 m/s; and 4.2 m/s. The variations of axial distance ratio are 0.3; 0.5; 0.7; 0.8; and 1. The result of the simulation shows that the optimum ratio of the axial distance will change with the change of wind velocity. Regarding the wind velocity of 2 m/s, the optimal ratio of the axial distance is 0.5. Regarding the wind velocity of 3 m/s and 4.2 m/s, the optimal ratios of the axial distance are 1 and 0.8, respectively.
Numerical Simulation of the Effect of Wind Velocity on the Counter-Rotating Wind Turbines Performance Yosua Heru Irawan; Muhammad Agung Bramantya
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 4 No. 1 (2019)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v4i1.7672

Abstract

The counter-rotating wind turbines (CRWT) is a wind turbine model developed from a single rotating wind turbine (SRWT) model with a horizontal axis. CRWTs have two rotors rotating in opposite directions on the same axis. The purpose of this research is to investigate the effect of wind velocity on CRWTs performance with different axial distance ratio. The flow around CRWTs is simulated using computational fluid dynamic (CFD) with ANSYS Fluent. The simulation consists of two steps: obtaining the optimum rotation and rotor torque, respectively. These two values are used to calculate the mechanical power of the rotors. In this simulation, the wind velocities are 2 m/s; 3 m/s; and 4.2 m/s. The variations of axial distance ratio are 0.3; 0.5; 0.7; 0.8; and 1. The result of the simulation shows that the optimum ratio of the axial distance will change with the change of wind velocity. Regarding the wind velocity of 2 m/s, the optimal ratio of the axial distance is 0.5. Regarding the wind velocity of 3 m/s and 4.2 m/s, the optimal ratios of the axial distance are 1 and 0.8, respectively.
Studi Eksperimen Pengaruh Sudut Pitch terhadap Karakteristik Performa pada Turbin Angin Counter-Rotating Faruq Avero Azhar; Muhammad Agung Bramantya
Journal of Mechanical Design and Testing Vol 3, No 1 (2021): Articles
Publisher : Departemen Teknik Mesin dan Industri, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (292.042 KB) | DOI: 10.22146/jmdt.55620

Abstract

Pemanfaatan energi angin menjadi daya berguna menuntut peningkatan efisiensi turbin angin. Cara lain untuk meningkatkan efisiensi dengan menggunakan turbin angin counter-rotating. Pada penelitian ini dilakukan pengamatan performa dari turbin angin full Scale model counter-rotating (CRWT) dengan sebuah generator dan roda gigi. Pengujian dilakukan pada kondisi lingkungan sebenarnya dan kecepatan angin yang fluktuatif. Rotor turbin depan dan belakang menggunakan 3 buah bilah dengan rasio diameter (D1/D2) = 0,5. Desain aerodinamika bilah turbin counter-rotating dibuat berdasarkan perhitungan menggunakan teori Blade Element Momentum (BEM). Sudut pitch rotor turbin diatur sebesar 0°, 10° dan 20° dan diamati daya elektrik keluaran dari generator untuk mengetahui perbedaan performa dari masing-masing variasi. Koefisien daya maksimum yang dihasilkan oleh rotor pada kecepatan angin 4 m/s sampai 7 m/s dengan sudut pitch 0° sebesar . Sedangkan turbin angin dengan sudut pitch rotor 10° dan 20° koefisien daya tertinggi masing-masing tercapai sebesar  dan . Hasil pengujian menunjukkan semakin besar sudut pitch koefisien daya yang dihasilkan pada kecepatan angin rendah semakin besar, akan tetapi semakin tinggi kecepatan angin rotor dengan sudut pitch kecil menghasilkan koefisien daya yang lebih besar.
SIMULASI NUMERIK PADA DIFFUSER AUGMENTED WIND TURBINES DENGAN ROTOR GANDA KONTRA ROTASI Yosua Heru Irawan; M Agung Bramantya
KURVATEK Vol 3 No 1 (2018): April 2018
Publisher : Institut Teknologi Nasional Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33579/krvtk.v3i1.574

Abstract

Wind energy is one form of renewable energy in Indonesia and its potential is very large to be utilized. Wind energy can be converted into electrical energy using wind turbines. Horizontal axis wind turbine will be the subject of this study, where the wind turbine model will be given additional diffuser. In addition, this wind turbine model will also be developed from a single rotor wind turbine into a double rotor wind turbine with opposite rotation direction or counter rotation. This research uses numerical simulation method using ANSYS Fluent software to know wind turbine performance. Simulations were performed at wind speeds of 3 m/s, with the ratio of the length and diameter of the inlet diffuser 0.5; 1; 1.5; 2; and 2.5. Based on the simulation results, it can be seen that the greater the ratio of inlet length and diameter, the mechanical power generated by the wind turbine rotor is greater. Double rotor wind turbine with a length ratio and 2.5 inlet diameter produces the highest performance on the front rotor and rotor rear. The greater the ratio of the length and diameter of the inlet, the mechanical power generated by the front rotor and the rotor inside the diffuser also increases.
Simulasi Numerik Pengaruh Jumlah Fuel Injector dan Dimensi Lubang Liner Ruang Bakar Turbojet 200 N Anwar Syarifudin; Muhammad Agung Bramantya
Journal of Mechanical Design and Testing Vol 4, No 1 (2022): Articles
Publisher : Departemen Teknik Mesin dan Industri, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jmdt.63201

Abstract

Ruang bakar merupakan salah satu komponen terpenting dalam turbojet karena menentukan gaya dorong turbojet. Tantangan pada turbojet kecil adalah menghasilkan pembakaran sempurna pada ruang yang terbatas. Penelitian ini bertujuan mempelajari pengaruh jumlah fuel injector dan lubang liner terhadap temperatur gas dan sisa CO pada outlet ruang bakar turbojet 200 N. Desain ruang bakar yang digunakan adalah reverse flow annular combustion chamber. Metode penelitian ini menggunakan permodelan pembakaran non premixed dan model turbulensi k-ε dengan solver ANSYS Fluent yang memvariasikan jumlah fuel injector dan diameter lubang liner. Model yang akan disimulasikan memiliki 4 buah boundary condition . Batas Inlet-Fuel dengan masukan laju alir kerosin (C12H23) 0.0076 kg/s dan temperatur 293 K. Inlet udara dengan input laju alir udara masuk 0,53kg/s, temperatur udara masuk 407K, batas combustor-wall diasumsikan adiabatik. Batas outlet dengan inputan tekanan 1 atmosfer. Dalam studi ini didapatkan hasil jumlah fuel injector yang optimal berjumlah 8 buah dan penambahan diameter lubang dilution liner akan meningkatkan temperatur dan sisa CO yang tidak terbakar pada outlet. Dapat disimpulkan jumlah fuel injector dan dimensi lubang liner berpengaruh pada kinerja ruang bakar yang selanjutnya pada gaya dorong turbojet.
STUDY OF ADDITIONAL FIN TO INCREASE EFFICIENCY OF SUPERHEATER AT HEAT RECOVERY STEAM GENERATOR Bramantya, Muhammad Agung
Jurnal Rekayasa Mesin Vol. 15 No. 1 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i1.1002

Abstract

Power plants are part of industrial facilities used to produce and generate electricity from various power sources; one of those is PLTGU (Pembangkit Listrik Tenaga Gas dan Uap or Gas and Steam Power Plant). PLTGU is a combined cycle between PLTG and PLTU. It is necessary to achieve a high-capacity target for the PLTGU to increase the generator's efficiency. One way to increase the efficiency of gas and steam power plants is by optimizing heat transfer in the Heat Recovery Steam Generator (HRSG). HRSG has several modules such as superheater, evaporator, economizer, and preheater. One that plays an essential role in absorbed high-temperature steam from the gas turbine is the superheater. The function of the superheater is to utilize the heat from the flue gas to reheat the fluid needed for the steam turbine. In this research, improvements of superheater were made with several fin variations at HRSG PLTGU. Variable of superheater refer to data on the layout of the HRSG PLTGU. Autodesk Inventor is used to modeling flue gas domain, tube, and fin. Additional of the fin has the purpose of optimizing heat transfer distribution in steam through a tube, such as an outlet temperature and efficiency of steam in tube superheater. The use of CFD (Computational Fluid Dynamic) with ANSYS Fluent could use to determine the temperature distribution of the superheater. The most optimal efficiency and outlet temperature of variation fin is the annular fin variation compared to the rectangular and straight fin variations.
Numerical Simulation of the Effect of NACA 0012 Nozzle Geometry on Ducted Propeller Performance: Simulasi Numerik Pengaruh Geometri Nozzle NACA 0012 pada Performa Ducted Propeller Suryolaksono, Muhammad Ramadhani; Bramantya, Muhammad Agung
Procedia of Engineering and Life Science Vol. 4 (2023): Proceedings of the 6th Seminar Nasional Sains 2023
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/pels.v4i0.1381

Abstract

Ducted propeller is a method on the propeller modification which added duct/nozzle on the propeller. Ducted propeller application is aimed to increase propeller thrust, increase propeller efficiency, and decrease propeller noise and vibration. In this research, a numerical simulation was conducted using ANSYS Fluent 2020 R2 with k-epsilon solver model. The aim of this research is to analyze the effect of the duct geometry using Ld/D (duct length/duct diameter) ratio. The simulation was done on two Ld/D variations at three different propeller angular velocity (1.000, 3.000, 5.000 rpm). The result of this research shows that duct with 0,6 Ld/D ratio has higher thrust force than duct with 0,5 Ld/D ratio. Meanwhile, the increase of propeller angular velocity increase propeller thrust force and fluid velocity.
Desain dan Analisis Kompresor Sentrifugal pada Jet Engine Menggunakan Metode CFD Fathoni, Burhanudin; Bramantya, Muhammad Agung
Journal of Mechanical Design and Testing Vol 5, No 2 (2023): Articles
Publisher : Department of Mechanical and Industrial Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jmdt.66148

Abstract

Perkembangan dalam dunia penerbangan semakin pesat setiap tahunnya. Hal ini termasuk pada perkembangan pada Unmanned Aerial Vehicle (UAV). Salah satu perkembangan pada UAV yang dapat menjadi fokus dalam penelitian lebih lanjut adalah pada sistem propulsinya. UAV dapat menggunakan jet engine yang memiliki thrust-to-weight ratio yang lebih tinggi sehingga dapat menerbangkan UAV lebih efektif dengan dikembangkannya kompresor sentrifugal yang dipakai pada mesin jet berskala kecil, yang mana memiliki rasio kompresi lebih tinggi dengan hanya satu tingkat, sehingga menurunkan berat mesin keseluruhan. Penelitian ini diawali dengan mempelajari desain komponen kompresor sentrifugal satu tingkat, yakni impeller dan diffuser. Setelah itu, dibuat model 3D pada software permodelan 3D yang kemudian di-mesh­ pada software ANSYS. Model yang telah di-mesh ini kemudian disimulasikan pada software ANSYS CFX yang memiliki basis Computational Fluid Dynamics. Setelah itu, dilakukan validasi hasil simulasi dengan teori perhitungan sesuai rumus yang telah dipelajari. Metode simulasi yang telah valid dapat dilanjutkan untuk mengetahui efek membesarkan saluran outlet terhadap rasio tekanan, efisiensi, dan kecepatan outlet pada kompresor sentrifugal tersebut. Hasil yang telah didapatkan menunjukkan penurunan rasio tekanan, efisiensi jika melebihi besar outlet optimal, serta penurunan kecepatan outlet yang sebanding dengan besar outlet diffuser. Dari simulasi yang telah dilakukan didapatkan hasil terbaik pada outlet sebesar 1.25 kali inlet dengan rasio kompresi dan efisiensi tidak turun dengan kecepatan outlet yang lebih rendah.
Karakteristik Kecepatan Check Valve Tipe Ball Pompa Perpindahan Positif Controlled Volume dengan Simulasi CFD Yunanto Handy Nugroho; Muhammad Agung Bramantya
Prosiding Seminar Nasional Ilmu Teknik Vol. 1 No. 1 (2024): Juni : Prosiding Seminar Nasional Ilmu Teknik
Publisher : Asosiasi Riset Ilmu Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/prosemnasproit.v1i1.2

Abstract

In order to achieve production targets for fuel and petrochemical products to support national energy security, reliable equipment is needed to support the operation of petroleum processing refineries. Main equipment such as injection pumps must be able to adapt to the expected operational conditions. Check valve is one of the supporting components of injection pump reliability. Research was conducted to determine the velocity characteristics of two ball type check valve designs using Computational Fluid Dynamics (CFD) numerical simulations. In this research, three variations of pump stroke length were simulated, namely 25%, 50% and 100% with three variations of solid particle size, namely 200, 250 and 300 microns. The fluid that passes through the check valve is a solid-liquid mixture of catalyst and particles. The analysis carried out is by comparing the velocity values as well as the flow patterns produced for each variations used. The simulation results show that of all the variations tested, the model with a stroke length of 100% produces the maximum velocity. In addition, the size of solid particles is inversely proportional to fluid velocity and flow. From the results of this research, it was also found that model 2 has more potential for backflow towards suction, and also model 2 has more potential for clogging because particles that should flow stop inside the check valve.
Investigation of Dorsal Fin Effects on the Aerodynamic Performance of Inverted-V Empennage VTOL Unmanned Aerial Vehicle Bramantya, Muhammad Agung; Nugroho, Gesang
Machine : Jurnal Teknik Mesin Vol 11 No 2 (2025): Machine : Jurnal Teknik Mesin
Publisher : Jurusan Teknik Mesin Fakultas Sains dan Teknik Universitas Bangka Belitung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33019/1sy9sm72

Abstract

Unmanned Aerial Vehicles (UAVs) are becoming essential tools in precision agriculture, enabling real-time monitoring, improved land management, and more efficient use of resources. Among them, Vertical Takeoff and Landing (VTOL) UAVs are ideal for operating in confined and uneven agricultural terrains. However, UAVs equipped with inverted-V empennages suffer from aerodynamic drawbacks, including directional instability and adverse yaw under sideslip conditions. This paper advances the state of the art by optimizing the aerodynamic performance of inverted-V tail configurations through the integration of a dorsal fin. Using Computational Fluid Dynamics (CFD), we assess multiple dorsal fin designs on a UAV platform with a maximum takeoff weight of 10 kg, 2 kg payload, 2-hour endurance, 10 m/s stall speed, and a 5 km² operational range. We analyze key aerodynamic metrics—lift and drag coefficients, lift-to-drag ratio, yaw moment coefficient—as well as flow behavior via pressure contours and vorticity plots. Results confirm that sideslip angles degrade aerodynamic efficiency, but a properly designed dorsal fin, particularly variation 2, significantly reduces adverse yaw at higher angles of attack and sideslip. This modification enhances UAV stability and flight performance, marking a meaningful improvement in VTOL UAV design for agricultural applications.