Yogi Alfiansah
Universitas Buana Perjuangan Karawang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Algoritma K-Nearest Neighbors untuk Analisis Sentimen pada Buletin APTIKOM Yogi Alfiansah; Amril Siregar; Anis Masruriyah
Scientific Student Journal for Information, Technology and Science Vol. 3 No. 1 (2022): Scientific Student Journal for Information, Technology and Science
Publisher : Scientific Student Journal for Information, Technology and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Membaca menjadi salah satu hal mendasar yang cukup penting dalam pembelajaran dan untuk menambah pengetahuan. Berbagai ilmu pengetahuan bisa didapatkan dengan membaca dan membaca juga dapat mengantarkan pada kesuksesan. Permasalahan yang pada saat ini yaitu masih kurangnya minat daya tarik dalam membaca, maka dari itu APTIKOM membuat sebuah media cetak dan daring yang dapat menarik minat baca yaitu Buletin. Namun, belum dapat dipastikan sentimen penulisan dari buletin apakah banyak mengandung kalimat positif atau negatif. Maka dari itu, dibutuhkan sebuah metode khusus untuk mengkategorikan secara otomatis isi dari Buletin tersebut banyak mengandung kalimat positif atau negatif. Data yang diperoleh dari Buletin merupakan sebuah data berbentuk teks atau kalimat yang akan diklasifikasi menggunakan algoritma K-Nearest Neighbors. Untuk mendapat hasil analisis sentimen, dokumen Buletin APTIKOM di filtering terlebih dahulu melalui tahapan text preprocessing. Setelah melalui tahapan text preprocessing, data tersebut diolah analisis sentimennya dan mendapatkan sebanyak lebih dari 150 kalimat yang mengandung sentimen positif dan tidak lebih dari 50 kalimat yang mengandung sentimen negatif dan netral. Hasil pengklasifikasian dengan algoritma K-Nearest Neighbors yaitu mendapatkan nilai K yang optimal berdasarkan nilai akurasi yaitu K=5 dan di evaluasi dengan Confusion Matrix sehingga mendapatkan nilai Accuracy 86.2%.