R. Lulus Lambang G. H
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

DIAGNOSA KERUSAKAN BANTALAN BOLA MENGGUNAKAN METODE SUPPORT VECTOR MACHINE Muhammad Fathurrohman; R. Lulus Lambang G. H; Didik Djoko Susilo
Mekanika: Majalah Ilmiah Mekanika Vol 18, No 1 (2019): MEKANIKA: Majalah Ilmiah Mekanika
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/mekanika.v18i1.35041

Abstract

Bearings are the critical part of any rotating machine. The catastrophic failure of the bearing can lead to fatal and harmful to the operation of the machine. Therefore, predictive maintenance based on condition monitoring of bearing is very important. The objective of this research is to apply Support Vector Machine (SVM) method for fault diagnosis of the ball bearing. The research was carried out at the bearing test rig. Four types of ball bearing condition, such as normal, inner race defect, ball defect, and outer race defect were measured of the vibration signals using data acquisition with a sampling frequency of 20 kHz at the constant speed of 1400 RPM. Various features were extracted from vibration signals in time domain, such as RMS, variance, standard deviation, crest factor, shape factor, skewness, kurtosis, log energy entropy and sure entropy. PCA transformation was employed to reduce the dimension of feature extracted data. SVM classification problems were solved using MATLAB 2016a. The results showed that the application of RBF kernel function with the C parameter =1 was the best configuration. The training model accuracy was 98.93% and the testing accuracy of SVM was 97.5%. Finally, the research results show that the SVM classification method can be used to diagnose the fault condition of the ball bearing..