Claim Missing Document
Check
Articles

Found 2 Documents
Search

PEMBUATAN GAME 2D BERJUDUL “SI BUJANG GHANONG” SEBAGAI SARANA EDUKASI BAGI MASYARAKAT MENGGUNAKAN CONSTRUCT 2 Wakit Kurniadani; Aliyadi Aliyadi; Adi Fajaryanto
KOMPUTEK Vol 2, No 1 (2018): April
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1126.052 KB) | DOI: 10.24269/jkt.v2i1.70

Abstract

Dalam dunia game, ad banyak jenis game yang beredar di masyarakat. Di era modern ini game yang paling laris atau di gemari adalah game android, karena sudah meratanya teknologi android sekarang ini. Game adventure merupakan salah satu game yang di gemari, dilihat dari penjualan situs game , game adventure termasuk game yang di gemari. Di era modern ini banyak game yang mementingkan sifat hiburan saja tanpa mementingkan sisi edukasi, Reog merupakan kebudayaan asli masyarakat ponorogo, dan turun-temurun terus dilestarikan. Di lihat dari segi pementasan di setiap acara rakyat pasti ada pertunjukan Reog, bahkan di setiap tahunya di selenggarakan FNRP (Festival Nasional Reog Ponorogo). Construct 2 merupakan Software pembuat game tanpa menggunakan skrip bahasa pemograman, karena Construct 2 sudah berbentuk objek, jadi pengguna cupup mengatur atribut suatu objek. Game berjenis Edukasi sangat menari di jadikan bahan ajar, dan untuk menjawab kemajuan zaman modern ini tanpa harus meniggalkan pengetahuan sejarah.
Implementation of Bot Telegram as Broadcasting Media Classification Results of Convolutional Neural Network (CNN) Images of Rice Plant Leaves Adi Fajaryanto; Fauzan Masykur; Mohammad Rizqi Rosyadi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 5 No. 1 (2023): Article Research Volume 5 Issue 1, January 2023
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v5i1.1976

Abstract

Rice plants play an important role in the life of the Indonesian people because rice is the raw material for rice as a staple food. The rice production process does not rule out the possibility of interference by pests and diseases resulting in losses that cause crop failure. Meanwhile, pests on rice plants can be caused by various types, namely types of fungi (leafblast, hispa, brownspot) and types of nuisance animals. In this research, it will be carried out how to classify the image of rice plant leaves using the deep learning Convolutional Neural Network (CNN) algorithm, then the results of the classification are sent to users by utilizing the telegram chat application. The rice plant leaf image dataset is grouped into 4 groups (leafblast, brownspot, hispa and healthy). From several experiments it can be seen the results of system performance, namely the classification speed takes 30-60 seconds.