Claim Missing Document
Check
Articles

Found 4 Documents
Search

MANAJEMEN PEMELIHARAAN UNTUK OPTIMALISASI LABA PERUSAHAAN Muhammad Zaky Zaim Muhtadi
Jurnal Pendidikan Akuntansi Indonesia Vol 8, No 1 (2009): Jurnal Pendidikan Akuntansi Indonesia
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jpai.v8i1.943

Abstract

Sejalan dengan perkembangan teknologi dewasa ini, persoalan yang dihadapi perusahaanterutama perusahaan industri akan semakin kompleks. Hal ini menuntut manajemenperusahaan untuk mengambil suatu tindakan yang bijaksana dengan memilih alternatifdalam mengambil keputusan agar tujuan perusahaan dapat tercapai. Salah satu tujuanyang paling utama adalah optimalisasi laba.Untuk mendapatkan optimalisasi laba dapat dilakukan diantaranya dengan melakukanpemeliharaan sarana dan prasarana. Pemeliharaan dilakukan untuk menjaga suatu barangatau memperbaikinya sampai pada suatu kondisi atau standar yang dapat diterima atausuatu aktivitas yang dibutuhkan untuk menjaga semua fasilitas dalam kondisi siappakai/operasi dan tetap dalam kondisi seperti semula.Dalam perusahaan industri, salah satu pemeliharaan yang harus diperhatikan adalahperawatan terhadap mesin-mesin yang dimilikinya. Ada beberapa macam sistempemeliharaan yang dapat diterapkan antara lain : sistem pemeliharaan sesudah rusak,sistem pemeliharaan rutin, sistem pemeliharaan ulang dan sistem pemeliharaan produktif.Namun ada kalanya suatu komponen/mesin sebaiknya diganti berdasarkan jam operasisesuai dengan petunjuk pabrikan untuk menghindari kerugian yang lebih besar.
Improving Fuel Consumption Efficiency of Synchronous Diesel Generator Operated at Adjustable Speed using Adaptive Inertia Weight Particle Swarm Optimization Algorithm Muhtadi, M Zaky Zaim; Suryoatmojo, Heri; Soedibyo; Ashari, Mochamad
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 8, No. 4, November 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v8i4`.1756

Abstract

Diesel generator is a reliable source of electricity, but it requires quite high operational costs, especially for fuel. This paper describes a technique for reducing fuel consumption in Diesel Engine Synchronous Generator systems. The system is originally a Constant Speed Diesel Synchronous Generator (CSD-SG), but during certain conditions, the speed is reduced to minimize fuel consumption by adjusting the Specific Fuel Consumption (SFC) map. SFC is defined as the amount of fuel consumed by a diesel engine generator for each unit of power output. It shows various numbers depending on the speed and operating power. In this paper, we use the Adaptive Inertia Weight Particle Swarm Optimization (AIWPSO) algorithm to select of the proper SFC curve at a certain speed and operating power. AIWPSO employs an adaptive inertial weight adjustment method, which enables this algorithm to achieve faster convergence than conventional Particle Swarm Optimisation (PSO) algorithms. The system is embedded with AC/DC/AC power electronics converter to regulate the frequency. Data set of 1000 kVA Cummins diesel engine generator from the oil and gas company in Central Java, Indonesia was taken for simulations. The results show that the AIWPSO algorithm calculates the fuel consumption as 1,678 liters per day on a typical condition, whereas in the previous method, the linear line needs 1,693 liters per day. Therefore, using AIWPSO method can save up to 450 liters of fuel per month. The simulation results show that the proposed method can improve fuel efficiency compared to the previous model.
Optimalisasi Desain Sistem Photovoltaic untuk Elektrifikasi Sumur Minyak Terpencil Menggunakan PVsyst Muhtadi, M Zaky Zaim; Naufal, Muhammad Mirza; Pujianto, Pujianto; Hamdani, Chalidia Nurin
Elposys: Jurnal Sistem Kelistrikan Vol. 12 No. 1 (2025): ELPOSYS vol. 12 no. 1 (2025)
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/elposys.v12i1.6621

Abstract

Sustainable power management in remote oilfield operations faces significant challenges due to grid dependency. This study evaluates a photovoltaic microgeneration system implementation at PT XYZ's oilfield facility using PVsyst simulation software. The methodology incorporates site-specific parameters to optimize system configuration for grid integration. Results show that a 4-unit monocrystalline photovoltaic array, receiving annual Global Horizon irradiation of 2008.9 kWh/m² and Global effective irradiation of 1893.9 kWh/m², achieves 2446.3 kWh/year generation capacity with 1974.6 kWh/year available for consumption. This microgeneration system meets 53.3% of the facility's 3706.9 kWh annual demand, with a Performance Ratio of 0.619, demonstrating significant potential for remote oilfield applications. The system's performance indicates opportunities for enhancement through capacity expansion, smart grid integration, and implementation of advanced monitoring systems, offering a scalable model for similar remote facilities in the oil and gas sector.
Sistem Monitoring Energi Listrik 3 Fase Berbasis IoT dan Firebase Muhtadi, M Zaky Zaim; Ranolat, Susana; Pujianto
Elposys: Jurnal Sistem Kelistrikan Vol. 12 No. 2 (2025): ELPOSYS vol. 12 no. 2 (2025)
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/elposys.v12i2.7206

Abstract

This research develops an Internet of Things (IoT)-based three-phase electrical energy monitoring system using Firebase for real-time energy management at PEM Akamigas Campus. The system integrates PM1200 Schneider power meter, ESP32 microcontroller, RS485 to TTL converter, and Firebase Realtime Database to monitor electrical parameters (voltage, current, power) simultaneously across three phases. Implementation testing was conducted for two hours with two-minute intervals, demonstrating system reliability with 100% data transmission success rate and latency under 2 seconds. Results show power fluctuations ranging from 9177W to 26285W, with peak consumption of 26285W occurring at 16:00-16:28, correlating with campus operational patterns. Compared to previous research, this system offers advantages in simultaneous three-phase monitoring, scalable cloud integration, and the excellent processing capabilities of ESP32. Although the system relies on a Wi-Fi connection and is not equipped with predictive features, opportunities for further development include the integration of machine learning, notification systems, integration of building management systems, and expansion to multiple locations for sustainable smart campus energy management.