Claim Missing Document
Check
Articles

Found 2 Documents
Search

KERNEL LOGISTIC REGRESSION-LINEAR FOR LEUKEMIA CLASSIFICATION USING HIGH DIMENSIONAL DATA Rahayu, S P; Purnami, S W; Embong, A; Zain, Jasni Mohammad
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 7, No 3, Januari 2009
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (161.821 KB) | DOI: 10.12962/j24068535.v7i3.a81

Abstract

Kernel Logistic Regression (KLR) is one of the statistical models that has been proposed for classification in the machine learning and data mining communities, and also one of the effective methodologies in the kernel–machine techniques. Basely, KLR is kernelized version of linear Logistic Regression (LR). Unlike LR, KLR has ability to classify data with non linear boundary and also can accommodate data with very high dimensional and very few instances. In this research, we proposed to study the use of Linear Kernel on KLR in order to increase the accuracy of Leukemia Classification. Leukemia is one of the cancer types that causes mortality in medical diagnosis problem. Improving the accuracy of Leukemia Classification is essential for more effective diagnosis and treatment of Leukemia disease. The Leukemia data sets consists of 7120 (very high dimensional) DNA micro arrays data of 72 (very few instances) patient samples on the state of Leukemia types. In Leukemia classification based upon gene expression, monitoring data using DNA micro array offer hope to achieve an objective and highly accurate classification. It can be demonstrated that the use of Linear Kernel on Kernel Logistic Regression (KLR–Linear) can improve the performance in classifying Leukemia patient samples and also can be shown that KLR–Linear has better accuracy than KLR–Polynomial and Penalized Logistic Regression.
SCOV-CNN: A Simple CNN Architecture for COVID-19 Identification Based on the CT Images Haryanto, Toto; Suhartanto, Heru; Murni, Aniati; Kusmardi, Kusmardi; Yusoff, Marina; Zain, Jasni Mohammad
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.1750

Abstract

Since the coronavirus was first discovered in Wuhan, it has widely spread and was finally declared a global pandemic by the WHO. Image processing plays an essential role in examining the lungs of affected patients. Computed Tomography (CT) and X-ray images have been popularly used to examine the lungs of COVID-19 patients. This research aims to design a simple Convolution Neural Network (CNN) architecture called SCOV-CNN for the classification of the virus based on CT images and implementation on the web-based application. The data used in this work were CT images of 120 patients from hospitals in Brazil. SCOV-CNN was inspired by the LeNet architecture, but it has a deeper convolution and pooling layer structure. Combining seven and five kernel sizes for convolution and padding schemes can preserve the feature information from the images.  Furthermore, it has three fully connected (FC) layers with a dropout of 0.3 on each. In addition, the model was evaluated using the sensitivity, specificity, precision, F1 score, and ROC curve values. The results showed that the architecture we proposed was comparable to some prominent deep learning techniques in terms of accuracy (0.96), precision (0.98), and F1 score (0.95). The best model was integrated into a website-based system to help and facilitate the users' activities. We use Python Flask Pam tools as a web server on the server side and JavaScript for the User Interface (UI) Design