Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Teknologi

Investigation of Thermal Conductivity and Dynamics Viscosity of Green Nanofluids (ZrO2-SiO2) Ramadhan, Anwar Ilmar; Saptaji, Kushendarsyah; Hendrawati, Tri Yuni; Sari, Alvika Meta; Umar, Efrizon; Aziz, Azmairit; Semendo, Rifqi Putra; Setiawan, Hanif Rama Yuda; Firmansyah, Firmansyah
Jurnal Teknologi Vol 16, No 2 (2024): Jurnal Teknologi
Publisher : Fakultas Teknik Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24853/jurtek.16.2.301-312

Abstract

In recent years, research has been directed towards improving the thermophysical properties of single-component nanofluids. Therefore, hybrid or composite nanofluids are developed to improve heat transfer performance. The thermophysical properties of ZrO2-SiO2 nanoparticles suspended in a mixture of water (W) and ethylene glycol (EG) with vol 60:40 or Green Nanofluids for various volume concentrations were investigated. Experiments were performed for volume concentrations of 0.1, 0.2, and 0.3% of green nanofluids at 50, 60, 70, and 80°C. Measurements of thermal conductivity and dynamic viscosity are performed at temperatures ranging from 50-80°C. The highest thermal conductivity of the green nanofluids is obtained at a concentration of 0.3%, and the maximum increase is up to 37.5% higher than the base fluid (EG/W). Meanwhile, evidence from the dynamic viscosity of green nanofluids is affected by concentration and temperature. Furthermore, the green nanofluids behave as a Newtonian fluid in a volume concentration of 0.1-0.3%. In conclusion, the combination of increased thermal conductivity and dynamic viscosity at a concentration of 0.3% has optimal conditions, which has more advantages for heat transfer than at other concentrations.
Effect of Mass Composition on Nano Zircon Synthesize from Local Zircon Sand Using Soda-Precipitation-Calcination-Caustic Fusion Method Sari, Alvika Meta; Ramadhan, Anwar Ilmar; Rahardja, Istianto Budhi; Umar, Efrizon; Yudistirani, Sri Anastasia; Faisal, Akmal Imam; Fikriyansyah, Fikriyansyah; Azmi, Wan Hamzah
Jurnal Teknologi Vol 16, No 2 (2024): Jurnal Teknologi
Publisher : Fakultas Teknik Universitas Muhammadiyah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24853/jurtek.16.2.169-178

Abstract

Zircon sand has the major component of ZrO2 with impurities SiO2, Fe2O2, and TiO2. Zircon sand can be synthesized using various methods, such as caustic fusion method. This research purposed to determine the effect of the mass composition of NaOH on fusion process of zircon sand and to find the optimal mass ration of NaOH on yield and characteristics of nano zircon produced. This research was conducted using caustic fusion and precipitation process to obtain the mass ration of NaOH in best zircon sand fusion (melting) process. The nano zircon obtained was analyzed its size using SEM and chemical composition using FTIR. The result show that the correlation between NaOH ration and yield following the equation y = 0.42x2-2.532x+3.908 and R2 =0.9696. It showed that the higher NaOH composition will reduce the size of nano zircon. The optimum NaOH ratio is 1 : 3.6 with size od 41.983 nm and yield 1.84% which in white, odorless and powder texture. The FTIR spectrum showed the presence of the -Zr-O2 functional groups at wave numbers 600 – 700 cm-1.